
Choosing Best Algorithm Design Strategies 
For a Particular Problem 

 

Thesis submitted in partial fulfillment of the requirements for the award 

of Degree of 
 

Master of Engineering  

in 

Software Engineering  

 

 

 

By: 

Name: Shailendra Kumar Nigam 

Roll No:  80731021 

 
 

Under the supervision of: 

Dr. Deepak Garg  

Assistant Professor, CSED 

& 

Mr. Ravinder Kumar 

Lecturer, CSED 

 

 

 
 
 

COMPUTER SCIENCE AND ENGINEERING DEPARTMENT 

THAPAR UNIVERSITY  

PATIALA – 147004 

 

JUNE 2009 







 iii 

ABSTRACT 
  

 

 

 

Algorithms have come to be recognized as the cornerstone of computing. Algorithm design 

strategies are typically organized either by application area or by design technique. This 

report describes different designing algorithms such as Brute force, Greedy, Divide and 

Conquer, Dynamic programming, Backtracking, Branch and Bound and many more. It 

describes how a particular algorithm is used for a specific problem. This report also 

proposes how to choose the best algorithm design strategy for a particular problem to 

facilitate the development of best algorithms based upon algorithm design strategy 

techniques. It also describes how a particular algorithm is used for a specific problem. 

Taking various parameters does a comparison of various algorithms. This report advocates 

a wider use of different problems in teaching the best algorithm design strategies. 
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CHAPTER 1 

INTRODUCTION 

 

 

1.1 Introduction 

 

Our studies reveal how people design algorithms those that principal design methods 

are used based upon some parameters in the absence of specific knowledge and belief 

that these parameters will play an equally important role in the design of algorithms. 

A study of algorithms has come to be recognized as the cornerstone of computer 

science. The progress in this field to date, however, has been very uneven. While the 

framework for analysis of algorithms has been firmly established and successfully 

developed for quite some time, much less effort has been devoted to algorithm design 

techniques. 

 

This comparative lack of interest is surprising and unfortunate in view of the two 

important payoffs in the study of algorithm design techniques: “First, it leads to an 

organized way to devise algorithms. Algorithm design techniques give guidance and 

direction on how to create a new algorithm. Though there are literally thousands of 

algorithms, there are very few design techniques. Second, the study of these 

techniques help us to categorize or organize the algorithms. Although some 

algorithms design strategies are better than others on average, there is rarely a best 

algorithm design strategies for a given problem. Instead, it is often the case that 

different algorithms design strategies perform well on different Problem instances [1]. 

Not surprisingly, this phenomenon is most pronounced among algorithms for solving 

hard problems, because runtimes for these algorithms design strategy are often highly 

variable from instance to instance. Choosing best algorithm design strategy is one of 

the most difficult decisions. Algorithm design is a specific method to create a 

mathematical process in solving problems. Applied algorithm design is algorithm 

engineering. Techniques for designing and implementing algorithm designs are 

algorithm design patterns, such as template method patterns, decorator patterns, uses 

of data structures, and name and sort lists. Some current uses of algorithm design can 

be found in Internet retrieval processes of web crawling packet routing and caching 

[2]. Use employ evolving design strategy to make algorithm. The initial design is a 
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correct, if inefficient, solution to the problem but may not be highly efficient each 

subsequent design is an improvement or optimization of the prior design and the final 

design is an optimal, algorithm for solving the problem. At each stage optimized 

strategy is applied and the effect on algorithmic complexity is derived. As each 

transformation is considered, additional abstractions Necessary to express the design 

strategies are introduced. 

 

The pedagogical advantages of the successive design strategy include: 

 Students see design principles applied in a precise context. 

 A succession of different principles is applied in the stages of the design for a 

single problem. This models the design process in the real world. 

 At each stage, the demonstration of correctness requires showing only correctness 

relative to the preceding algorithm. 

 

1.2 How to Design Algorithms 

Creating an algorithm design is an art, which may never be fully automated. Various 

algorithm design techniques that have proven to be useful in that they have often 

yielded good algorithms. By mastering these design strategies, it will become easier 

for you to devise new and useful algorithms. Algorithm is a method for solving a 

computational problem and algorithm design is identified in many solution theories of 

operation research, such as divide and conquer, dynamic programming and greedy 

algorithm.  

 

The Techniques for designing and implementing algorithm design is based on 

template method patterns, data structures etc. A Design technique is often expressed 

in pseudocode as a template that can be particularized for concrete problems [3]. This 

template name is algorithm schemas. Algorithm schemas consist on identifying 

structural similarities among algorithms that solve different problems. Programming 

language such as algorithmic language, COBOL, FORTRAN, PASCAL, SAIL are 

computing tools to implement an algorithm design. But algorithm design is not a 

programming tool. Algorithm design basically mathematical process of writing a 

finite set of steps each of which may require one or more operations. 
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1.3 How to Express Algorithms 
 

Algorithm design can be expressed in many kinds of notation like flowcharts, 

programming language, rational rose tool, computer aided design applications and 

pseudocode etc. flowcharts and rational rose are expressed in structured way and 

avoid the ambiguities in language statements. Computer-Aided Design (CAD), also 

known as Computer-Aided Drafting, is the use of computer software and systems to 

design and create 2D and 3D virtual models of goods and products for the purposes of 

testing. It is also sometimes referred to as computer assisted drafting. Programming 

languages are primarily intended for expressing algorithms in a form that can be 

executed by a computer, but are often used as a way to define or document 

algorithms. 

 

Once an algorithm is devised, it is necessary to show that it computes the correct 

answer for all possible legal inputs. The algorithm need not as yet be expressed as 

program. It is sufficient to state it in any precise way. The purpose of assures that this 

algorithm will work correctly independently of the issues concerning the 

programming language it will eventually be written in [4]. 

 

1.4 Fundamental Concepts of Algorithm 
 

There are two fundamental concepts of algorithm  

 Functional correctness 

 Proof of correctness  

 

1.4.1 Functional Correctness [5]. 

Functional correctness is depend on the following  

 Precondition: Algorithm is correct if every data that satisfy some condition 

that is called precondition of the algorithm  

 Post condition: The out put data satisfy a certain predefined condition that is 

called post condition of the algorithm. 
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1.4.2 Proofs of Correctness of Algorithms [6]. 

Correctness of algorithm is depends on the two issues 

 Given an algorithm prove that it is correct. It is always achieves the intended 

result 

 Design an algorithm with intended properties from scratch. This is even more 

difficult. 

 

Proof of correctness also depends on the mathematical proof. Whenever algorithm is 

run on a set of inputs that satisfy the problems precondition is expected to hold before 

the method is executed. Post condition what holds after the method is executed. A 

proof that a program is correct often has two pieces (that can be developed separately) 

 Proof of partial correctness [7]: This is a proof that, whenever an algorithm 

is run on a set of inputs satisfying the problem’s precondition, either 

o The algorithm halts, and the outputs (and inputs) satisfy the problem’s 

post condition, or 

o The algorithm does not halt at all. 

 Proof of termination [7]: This is a proof that the algorithm always halts, 

whenever it is run on a set of inputs that satisfy the precondition. 
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CHAPTER 2 

CONCEPT OF ALGORITHMS DESIGN STRATEGIES 

 
 

2.1 Brute Force Algorithms 

Definition: An algorithm that inefficiently solves a problem, often by trying every one 

of a wide range of possible solutions 

 

Main Approach 

 Generate and evaluate possible solutions until 

o Satisfactory solution is found. 

o Best solution is found. 

o All possible solutions found 

 Return best solution 

 Return failure if no satisfactory solution. 

 Generally most expensive approach. 

 

Description 

A brute force algorithm simply tries all possibilities until a satisfactory solution is 

found such an algorithm can be: 

 Optimizing: Find the best solution. This may require finding all solutions, or 

if a value for the best solution is known, it may stop when any best solution is 

found 

 Satisfying: Stop as soon as a solution is found that is good enough 

Brute force algorithm is require exponential time and used in various heuristics and 

optimizations can be used 

Heuristic: A rule of thumb that helps you decide which possibilities to look at first. 

Optimization: In this case, to eliminate certain possibilities without fully exploring 

them [8]. 

 

The C code [9] 

Void BF (char *x, int m, char *y, int n) { 
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int i, j; 

/* Searching */ 

for (j = 0; j <= n - m; ++j)  

{ 

for (i = 0; i < m && x[i] == y[i + j]; ++i); 

if (i >= m) 

OUTPUT(j); 

} 

Strengths: 

 Wide applicability 

 Simplicity 

 Yields reasonable algorithms for some important problems 

o Searching, string matching, matrix multiplication 

 Yields standard algorithms for simple computational tasks 

o Sum or product of n numbers, finding max or min in a list 

Weaknesses: 

 Rarely yields efficient algorithms 

 Some brute force algorithms unacceptably slow 

 Not as constructive/creative as some other design techniques 

 

Example 1: Traveling salesman problem 

Question: Given n cities with known distances between each pair, find the shortest 

tour that passes through all the cities exactly once before returning to the starting city. 

 

Example: 

a b 

c d 

8 

2 

7 

5 3 
4 
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Tour                                                         Cost                            

 a→b→c→d→a                         2+3+7+5 = 17 

 a→b→d→c→a                         2+4+7+8 = 21 

 a→c→b→d→a                         8+3+4+5 = 20 

 a→c→d→b→a                         8+7+4+2 = 21 

 a→d→b→c→a                         5+4+3+8 = 20 

 a→d→c→b→a                         5+7+3+2 = 17 

 

2.2 Greedy Algorithm [10] 

 
The greedy algorithm is perhaps the most straightforward design technique. It can be 

applied to a wide variety of problem. Most though not all of these problems have n 

inputs and require us to obtain a subset that satisfies some constraints. Any need to 

find a feasible solution that either maximizes or minimizes a given objective function. 

A feasible solution that does this is called an optimal solution.  

 

Note: greedy algorithm avoid backtracking and exponential time O(2
n
) 

 

Greedy algorithms work in phases. In each phase, a decision is made that appears to 

be good, without regard for future consequences E.g. Kruskal’s MST algorithm, 

Dijkstra’s algorithm [11]. 

 

Definition 

Greedy algorithm work in phases. In each phase, a decision is made that appears to be 

good, without regard for future consequences. Generally, this means that some local 

optimum is chosen. Greedy algorithm to find minimum spanning tree. Want to find 

set of edges [12].  

 

Note: Prim’s algorithm and Kruskal’s algorithm are greedy algorithms that find the 

globally optimal solution, a minimum spanning tree. In contrast, any known greedy 

algorithm to find a Hamiltonian cycle might not find the shortest path, that is, a 

solution to the traveling salesman problem. If there is no greedy algorithm that always 

finds the optimal solution for a problem, one may have to search (exponentially) 

many possible solutions to find the optimum. Greedy algorithms are usually quicker, 

since they don’t consider the details of possible alternatives 
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Type of Greedy Algorithm 

There are three type of greedy algorithms 

 Pure Greedy Algorithms   

 Orthogonal Greedy Algorithms   

 Relaxed Greedy Algorithms 

 

General Characteristics of Greedy Algorithms [13] 
 

Commonly, greedy algorithms and the problems they can solve are characterized by 

most or all of the following features. 

 To construct the solution of our problem, a set (or list) of candidates is 

required: the coins that are available, the edges of a graph that may be used to 

build a path, the set of jobs to be Scheduled, or whatever. 

 As the algorithm proceeds, two other sets are accumulated. One contains 

candidates that have already been considered and chosen, while the other 

contains candidates that have been considered and rejected. 

 There is a function that checks whether a particular set of candidates provides 

a solution to our problem, ignoring questions of optimality for the time being. 

For instance, do the coins add up to the amount to be paid? Do the selected 

edges provide a path to the node to reach? Have all the jobs been scheduled? 

 A second function checks whether a set of candidates is feasible, that is, 

whether or not it is possible to complete the set by adding further candidates 

so as to obtain at least one solution to our problem. Here too, the time being 

concerned is not with optimal1ty.  

 Yet another function, the selection function, indicates at any time which of the 

remaining candidates, that have neither been chosen nor rejected, is the most 

promising. 

 Finally an objective function gives the value of a solution found: the number 

of coins used to make change, the length of the path constructed, the time 

needed to process all the jobs in the schedule, or whatever other values are 

trying to optimize. Unlike the three functions mentioned previously, the 

objective function does not appear explicitly in the greedy algorithm. 
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Example: - Scheduling 

Given jobs j1, j2, j3, ..., jn with known running times t1, t2, t3, ..., tn. what is the best 

way to schedule the jobs to minimize average completion time? 

 

Job  Time 

J1 16 

J2 8 

J3 3 

J4 14 

 

 

 

 

 

 

 

 

 

 

 

 

Scheduling 

J1 J2 J3 J4 

                  16       24                27          41 

Average completion time = (16+24+27+41)/4 = 27 

J3 J2 J4 J1 

        3                                11                                          25                                                              41  

Average completion time = (3+11+25+41)/4 = 20 

Description 
 

 Greedy-choice property: if shortest job does not go first, the y jobs before it 

will complete 3 time units faster, but j3 will be postponed by time to complete 

all jobs before it 

 Optimal substructure: if shortest job is removed from optimal solution, 

remaining solution for n-1 jobs is optimal 

 

Optimality Proof 
 

•Total cost of a schedule is 

                              N 

                             ∑(N-k+1)tik 

                                          k=1 

     t1 + (t1+t2) + (t1+t2+t3) ... (t1+t2+...+tn) 

                                        N           

                       (N+1)∑tik - ∑k*tik 
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                                 k=1      

•First term independent of ordering, as second term increases, total cost becomes 

smaller 

 

Suppose there is a job ordering such that    x > y and tix < tiy  Swapping jobs (smaller 

first) increases second term decreasing total cost  

Show: xtix + ytiy < ytix + xtiy 

xtix + ytiy = xtix + ytix + y(tiy - tix) 

             = ytix + xtix+ y(tiy - tix) 

             < ytix + xtix+ x(tiy - tix) 

             = ytix + xtix+ xtiy - xtix             = ytix + xtiy 

 

2.3 Divide and Conquer 

Divide and conquer algorithm suggests splitting the inputs into distinct subsets. These 

sub problems must be solved and then a method must be found to combine sub 

solutions into a solution of the whole. If the sub problems are still relatively large, 

then the divide and conquer strategy can be possibly be reapplied. Often the sub 

problems resulting from a divide and conquer design are of the same type as the 

original problem. For those cases the reapplication of the divide and conquer principle 

is naturally expressed by a recursive algorithm. This algorithm technique is the basis 

of efficient algorithms for all kinds of the problems, such as quick sort, merge sort 

and discrete Fourier transform. Its application to numerical algorithms is commonly 

known as binary splitting [4]. 

Divide-and-conquer algorithm works as follows: 

 Divide and conquer algorithm are divided into several smaller instances of the 

same problem and same size. 

 The smaller instances are solved by recursively. 

o Sometimes, a different algorithm is applied when instances become 

small enough. 

 The smaller instances are combined and to get a solution to the original 

problem. 

o No necessary to combine in some cases. 
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 Divide-and-conquer technique is ideally suited for parallel computers, in 

which each sub problem can be solved simultaneously by its own processors. 

 Common case: Dividing a problem into two smaller problems 

Algorithm of Divide and Conquer  

1. Algorithm D-and-C (n: input size) 

2. If n ≤ n0 /* small size problem*/ 

3. Solve problem without further sub-division; 

4. Else 

5. Divide into m sub-problems; 

6. Conquer the sub-problems by solving them 

7. Independently and recursively; /* D-and-C (n/k) */ 

8. Combine the solutions; 

 

EXAMPLES: 

o Binary search 

o Powering a number 

o Fibonacci numbers 

o Matrix multiplication 

o Strassen’s algorithm 

o VLSI tree layout 

 

Divide and Conquer  
 

Divide: P => P1,…………….Pk 

Conquer: S (P1),……………...S (Pk) 

Merge: S (P1),………………., S (Pk)=> S(P) 

 

Examples: Sorting (merge sort and quick sort), searching (binary search), closest pair 

(the O (n log n) algorithm), and selection (the linear-time algorithm). 

 

Algorithm template: 

 Function P(n) 

 if n <=c 

 Solve P directly 

 Return its solution 
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 Else P => P1, ..., Pk //divide 

 For i = 1 to k 

 Si = P(ni) //conquer 

 S1, ..., Sk => S //merge 

 return S 

Time complexity: 

 

Strassen’s algorithm 

-Given A=(aij) nxn and B=(bij) nxn. 

 

– First algorithm: 

for i = 1 to n 

for j = 1 to n 

c[i,j] = 0 

for k = 1 to n 

c[i,j] = c[i,j] + a[i,k] * b[k,j] 

  Time complexity: O (n
3
) 

 

- Second algorithm: 

                                              

                                               

                                                  

C11 = A11 B11+ A12 B21 

C12 = A11 B12 + A12 B22 

C21=A21 B11 + A22 B21 

C22 =A21 B12 +A22 B22 
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So the multiplication of two n x n matrices becomes eight multiplications of two n/2 x 

n/2 matrices, giving us T (n)=8T(n/2) +O (n
2
). By iterating, we have T (n)=O (n

3
). No 

improvement! 

M1 (A12 –A22) (B21 +B22) 

M2 (A11 + A22) (B11 + B22) 

M3 (A11 – A21) (B11 + B12) 

M4 (A11 + A 12) B22 

M5 A11 (B12 – B22) 

M6 A22 (B21 – B11) 

M7 (A21 + A 22 ) B11 

 

C11 M1 – M2  - M4 + M6 

C12 M4 + M5 

C21 M6 + M7 

C22 M2 – M3  + M5 - M7 

 

Using the above idea in the algorithm, we get 

T (n) = 7T(n/2)+O(n
2
), thus T(n) =  O(n

log7
) = O(n

2.81
) 

By iterating 
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           Figure 2.1 Divide and Conquer 

 

2.4 Dynamic programming [4][14] 
 

Dynamic programming is an algorithm design method that can be used when the 

solution to a problem can be viewed as the result of a sequence of decisions. Dynamic 

programming is a similar to divide and conquer algorithm. It is express solution of a 

problem in terms of solutions to sub problems. The Key difference is between 

dynamic programming and divide and conquer is that while sub problems in divide 

and conquer are independent, sub problems in dynamic programming may them 

selves share sub problems. This means that if these were treated as independent sub 

problems, the complexity would be higher. Dynamic programming is typically used to 

solve optimization problems. In bioinformatics, the most common use of dynamic 

programming is in sequence matching and alignment. 

 

 To begin, the word programming is used by mathematicians to describe a set 

of rules, which must be followed to solve a problem. 

 Thus, linear programming describes sets of rules which must be solved a 

linear problem. 

 In our context, the adjective dynamic describes how the set of rules works. 

 In this course, a number of examples of recursive algorithms are seen. 

Problem of size n 

Subproblem1 of 

size n/2 

Subproblem2 of 

size n/2 

Solution to sub problem 1 Solution to sub problem 2 

Solution to the original 

Problem 
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 The run time of these algorithms may be found by solving the recurrence 

relation itself. 

 The first example of a dynamic program is a technique for solving the 

following recurrence relation [9]. 

 

 You will recall that this defines the Fibonacci sequence of integers: 

1, 1, 2, 3, 5, 8, 13, 21, 33, 54,... 

 

Example  
 

// Calculate the nth Fibonacci number 

Double F( double n ) { 

    if ( n <= 1 ) { 

        return 1.0; 

    } else { 

        return F( n – 1 ) + F( n – 2 ); 

    } 

} 

 Recall definition of Fibonacci numbers: f(0) = 0 

f(1) = 1 

f(n) = f(n-1) + f(n-2) 

 Compute the nth Fibonacci number recursively (top-down) 

                                  f(n) 

             f(n-1)              +             f(n-2) 

f(n-2)     +     f(n-3)          f(n-3)     +     f(n-4) 

 

Example: Fibonacci numbers (2) 

Compute the nth Fibonacci number using bottom-up iteration: 

1. F (0) = 0 

2. F (1) = 1 

3. F (2) = 0+1 = 1 

 

   















12F1F

11

01

F

nnn

n

n

n
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4. F (3) = 1+1 = 2 

5. F (4) = 1+2 = 3  

6. F (n-2) =  

7. F (n-1) =  

8. F (n) = f (n-1) + f (n-2) 

Example: Computing binomial coefficients 

 

Algorithm Based On Identity 

 Algorithm Binomial (n,k) 

 for i <- 0 to n do 

1. for j <-0 to min(j,k) do 

2. if j=0 or j=i then C[i,j] ß 1 

3. else C[i,j]ßC[i-1,j-1]+C[i-1,j] 

4. return C[n,k] 

 Pascal’s Triangle 

 

2.5 Backtracking Algorithm [4][15] 
 

Backtracking algorithm represents one of the most general techniques. Many 

problems which deal with searching for a set of solutions or which ask for an optimal 

solution satisfying some constraints can be solved using the backtracking formulation. 

Many of the problems being solved using backtracking require that all the solutions 

satisfy a complex set of constraints. For any problem these constraints can be divided 

into two categories explicit and implicit. 

 View the problem as a sequence of decisions 

 Systematically considers all possible outcomes for each decision 

 Backtracking algorithms are like the brute-force algorithms 

 However, they are distinguished by the way in which the space of possible 

solutions is explored 

 Sometimes a backtracking algorithm can detect that an exhaustive search is 

not needed 

 

Example: - Solving a maze 

 Given a maze, find a path from start to finish 
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 At each intersection, you have to decide between three or fewer choices: 

o Go straight 

o Go left 

o Go right 

 You don’t have enough information to choose correctly 

 Each choice leads to another set of choices 

 One or more sequences of choices may (or may not) lead to a solution 

 Many types of maze problem can be solved with backtracking 

 

Solving a puzzle 
 

 In this puzzle, all holes but one are filled with white pegs 

 You can jump over one peg with another 

 Jumped pegs are removed 

 The object is to remove all but the last peg 

 You don’t have enough information to jump correctly 

 Each choice leads to another set of choices 

 One or more sequences of choices may (or may not) lead to a solution 

 Many kinds of puzzle can be solved with backtracking 

 

Figure 2.2 Puzzle Problem 

 

2.6 Branch and Bound Algorithms [4][16] 

Branch and Bound Algorithm based on limiting search using current solution. It 

means this is a general search method. This method considering the root problem and 

lower bounding and upper bounding procedures are applied to the root problem. 

Branch and bound algorithm is applied recursively to the sub problem. If an optimal 
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solution is found to a sub problem, it is a feasible solution to the full problem, but not 

necessarily globally optimal. 

 

Branch and Bound Algorithm Approach  

 Firstly try to track best current solution found  

 The partial current solutions that can’t be improved that should be eliminated. 

 Reduces amount of backtracking  

 

Note: Not guaranteed to avoid exponential time O (2
n
)  

 

Basic features of Branch and Bound Algorithm 

Best solution is only compared with a nodes bound values only if the bound value us 

not better then the best solution so far there are following reasons 

 The value of the node bound is not better than the other 

 Node does not represent the feasible solutions 

 The node consists of a single point represent the subset of feasible solutions. 

 

Example: Assignment Problem [17] 

Assigning n people to n jobs so that the total cost is minimized. Each person 

does one job and each job is assigned to one person.  

Read the assignments as <Job 1, Job 2, Job 3, Job 4>: 

<c,b,a,d> assigns Person c Job 1, Person b Job 2, etc. 

Job 1   Job2    Job3    Job4 

                 3          2          7         8      Person a 

     6           4         3         7      Person b 

C=            5           8         1         8      Person c 

                 7           6         9         4      Person d 

<a,b,c,d> cost =3+4+1+4=12 

<a,b,d,c> cost=3+4+9+8=24 

<a,d,b,c> cost=3+6+4+8=21 

<d,a,b,c> cost=7+2+3+8=20 
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<d,c,b,a>  cost =7+8+3+8=26 

Etc. totaling 4! Permutations. 

Permutations: Generate n! Permutations. The following prints all the costs of the n! 

Job assignments 

All permutations algorithm - this is a simple algorithm just to 

generate all n! Permutations                     

      Assumes: person <- a + 1 => person = b 

                              Initially, X[a..d] is unassigned any Job. 

Permutations( X[a..d], person )  

1.       if person = d then print cost(X)           -- Bottom of space  

2.       else  

3.              for Job {1, 2, 3, 4 } do  

4.                 if not assigned(X, Job)  

5.                     X[person+1] <-Job               -- Assign person a job  

6.                     Permutations( X[a..d], person+1 )  

7.                     X[person+1] <- Φ                 -- Unassign job  

Cost (X ) returns cost of assigning Job 1..4 to person a..d 

Assigned (X, Job) returns true if Job is assigned person a..d 

The resulting state-space for assigning Jobs {1, 2, 3, 4} to each person {a, b, c, d} is: 

                        Figure 2.3 Branch and bound Assignment problem 
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           Job 1   Job2    Job3    Job4 

                 3          2          7         8      Person a 

     6           4         3         7      Person b 

C=            5           8         1         8      Person c 

                 7           6         9         4      Person d 

 

From the table above, the rightmost branch <d, c, b, a>, cost=7
d1

 + 8
c2

 + 3
b3

 + 8
a4

=26 

EXAMPLE: 4-queens problem 

 

EXAMPLES: a) Longest Common Subsequence (LCS) 

         Given two sequences x[1 . . m]and y[1 . . n], find a longest subsequence 

common to them both. 

                        b) Optimal Substructure 

 
Figure 2.4 Optimal Substructure 

 

2.7 Decrease-And-Conquer algorithm [18][19] 
 

Decrease-and-conquer is an approach to solving a problem by: 

 Change an instance into one smaller instance of the problem. 

 Solve the small instance. 

 Convert the solution of the small instance into a solution for the large instance. 

 

Decrease by a Constant 
 

Decrease-by-a constant decreases the instance size by 1 (or some other constant), e.g., 

210 = 2 ∗ 29 
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Figure 2.5 Decrease-And-Conquer algorithm 

 

Decrease by a Constant Factor 

 

Decrease-by-a constant-factor decreases the instance size by half (or some other 

fraction), e.g., 210 = 25 ∗ 25.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 Decrease by a constant factor 

 

Comments on Insertion Sort 
 

 Insertion sort ensures A[0] ≤ A[1] ≤ . . . ≤ A[i − 1]. 

 Insertion sort looks for correct position for A[i]. 

Problem of size n 

Sub Problem 

Of size n-1 

Solution to the sub problem 

Solution to the original problem 

Problem     of size n 

Sub problem of  

     Size n/2 

Solution to the sub problem 

Solution to the original problem 
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 Insertion sort shifts values at and above correct position. 

 Worst Case: The number of comparisons  

         

 Best Case: n − 1 ∈ (n) comparisons if array is already sorted. 

 Average Case ≈ n2/4 comparisons. 
 

 

2.7.1 Depth-First Search 
 

Graph Traversal 

 

Graph traversal algorithms process all the vertices of a graph in a systematic fashion. 

 They are useful for many graph problems such as checking connectivity, 

checking a cyclicity, connected components, finding articulation points, and 

topological sorting. 

 First all the vertices are marked as unvisited. 

 Then an unvisited vertex is selected, marked as visited, and all unvisited 

vertices reachable from that vertex are marked as visited. 

 Repeat above step until all vertices are visited. 

 

Depth-First Search Algorithm 

 

1. Algorithm DFS (v) 

2. // Recursively visits unvisited vertices from v 

3. // Input: Vertex v 

4. // Output: Unvisited vertices from v are marked 

5. Count ← count + 1 

6. Mark v with count 

7. For each vertex u adjacent from v do 

8. If v is marked with 0 

9. DFS (u) 
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2.7.2 Breadth-First Search Algorithm 
 

Breadth-first search is a graph-searching algorithm that begins at the root node and 

explores all the remaining nodes. Then for each of those nearest nodes, it explores 

their unexplored neighbor nodes, and so on, until it finds the goal. 

 

Algorithm (informal) 

1. Enqueue the root node. 

2. Dequeue a node and examine it.  

3. If the element sought is found in this node, quit the search and return a result. 

4. Otherwise enqueue any successors (the direct child nodes) that have not yet 

been examined. 

5. If the queue is empty, every node on the graph has been examined -- quit the 

search and return, "not found". 

6. Repeat from Step 2. 

 

Note: Using a stack instead of a queue would turn this algorithm into a depth-first 

search. 

Algorithm BFS (v) 

1. // Visits unvisited vertices from v 

2. // Input: Vertex v 

3. // Output: Unvisited vertices from v are marked 

4. Count ← count + 1; mark v with count 

5. Initialize a queue with v 

6. While the queue is not empty do 

7. U ← remove vertex from the queue 

8. For each vertex w adjacent from u do 

9. If w is marked with 0 

10. Count ← count + 1 

11. Mark w with count 

12. Add w to the queue 
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2.8 Transfer and Conquer Algorithm [1][20] 

Transform-and-conquer is an approach to solving a problem by changing an instance 

to: 

 A simpler instance of the same problem, or 

 A different representation of the same problem, or 

 An instance of a different problem. 

 

 

 

 

 

 

 

Figure 2.7 Step of Transfer and conquer algorithm 

 

Three kinds of transformation: 

1. Instance simplification: 

 A more convenient instance of the same problem 

 Presorting, uniqueness checking, searching 

2. Representational change: 

 A different representation of the same instance 

 Balanced search trees 

 Algorithms in Action; Dr Linda Stern 

 Heaps and heap sort 

3. Problem reduction: 

 A different problem altogether 

 Lcm, counting paths, linear programming 

 Reductions to graph problems 

 

Simple Instance 

Or 

Another Representation 

Or 

Another Problem Instance 

Problems Instance  Solution 
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CHAPTER 3 

COMPARISON OF ALGORITHM DESIGN 

STRATEGIES 

 

 

Various algorithm design strategies has been compared on the basis of various factors 

like complexity, memory required, stability etc. This is very important to know about 

what is complexity of my algorithm in term of time and space. It would be vary 

harmful to blindly use sorting without considering complexity of algorithm. 

Comparison of various algorithm design strategy is also depends upon CPU, Memory 

disk usage and network usage etc. This resources is defined the efficiency of 

algorithm and performance is depends on the machine, compiler as well as the code. 

Suppose size of the problem is larger then complexity then it will affect the 

performance. The time required by a method is proportional to the number of basic 

operations that it performs 

Here are some examples of basic operations: 

 Arithmetic operation  

 Assignment 

 Test  

 Read 

 Write  

Some methods perform the same number of operations every time they are called. For 

example, consider the size method, of the Sequence class always performs just one 

operation: return numItems; the number of operations is independent of the size of the 

sequence, methods like this (that always perform a fixed number of basic operations) 

require constant time. Other methods may perform different numbers of operations, 

depending on the value of a parameter or a field. 

 

3.1 Different Notation for Calculating Complexity 

To show the complexity of the sorting algorithm in time and space, some asymptotic 

notations are used. These notations help us predict the best, average and poor 

behavior of the sorting algorithm. The various notations are as follow: 
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• Worst Case Running Time 

• Best Case Running Time 

•Best and Worst case are the same 

 

3.1.1 Big-O Notation 

• Definition: A theoretical measure of the execution of an algorithm usually the time 

or memory needed, given the problem size n, which is usually the number of items.  

Informally, saying some equation f (n) = O (g(n)) means it is less than some constant  

multiple of g(n). The notation is read, "f of n is big oh of g of n". 

• Formal Definition: f (n) = O (g (n)) means there are positive constants c and k, 

such that 0  f (n)  cg(n) for all n  k. The values of c and k must be fixed for the 

function f-and-must-not-depend-on-n [21] [24].  

 

Figure 3.1: Big O Notation Graph 

 

3.1.2 Theta Notation () 

• Definition: A theoretical measure of the execution of an algorithm usually the time 

or memory needed, given the problem size n, which is usually the number of items.  

Informally, saying some equation f (n) =  (g(n)) means it is within a constant 

multiple of g(n). The equation is read, "f of n is theta g of n". 

• Formal Definition: f(n) =  (g(n)) means there are positive constants c1, c2, and k,  

such that 0 _ c1g(n)  f(n)  c2g(n) for all n  k. The values of c1, c2, and k must be 

fixed for the function f and must not depend on n [22] [24]. 
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Figure 3.2:  Theta Notation Graph 

This notation is medium bound indicate what average can happen  

 

3.1.3 Omega Notation () 
 

• Definition: A theoretical measure of the execution of algorithms usually the time or 

memory needed, given the problem size n, which is usually the number of items. 

Informally, saying some equation f (n) =  (g (n)) means g (n) becomes insignificant 

relative to f (n) as n goes to infinity. 

 

• Formal Definition: f(n) =  (g(n)) means that for any positive constant c, there 

exists a constant k, such that 0 cg(n) < f(n) for all n  k. The value of k must not 

depend on n, but may depend on c. 

This notation is lower bound indicate what best can happen [23] [24]. 

 

3.2 How to Determine Complexities [24][25] 

In general, how can you determine the run time of a piece of code? The answer is that 

it depends on what types of statements are used. 

 

1. Sequence of statements 

2. statement 1; 

3. statement 2; 

4. ... 

5. statement k; 

Total time = time (statement 1) + time (statement 2) + ... + time (statement k) if each 

statement is "simple" (only involves basic operations) then the time for each statement 

is constant and the total time is also constant: O (1). In the following examples, 

assume the statements are simple unless noted otherwise. 
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6. if-then-else statements 

7. if (condition) { 

8. sequence of statements 1 

9. } 

10. else { 

11. sequence of statements 2 

12. } 

Worst-case time is the slowest of the two possibilities: max (time (sequence 1) time 

(sequence 2)). For example, if sequence 1 is O(N) and sequence 2 is O(1) the worst-

case time for the whole if-then-else statement would be O(N). 

13. for loops 

14. for (i = 0; i < N; i++) { 

15. sequence of statements 

16. } 

The loop executes N times, so the sequence of statements also executes N times. 

Since we assume the statements are O(1), the total time for the for loop is N * O(1), 

which is O(N) overall. 

17. Nested loops 

18. for (i = 0; i < N; i++) { 

19. for (j = 0; j < M; j++) { 

20. sequence of statements 

21. } 

22. } 

The outer loop executes N times. Every time the outer loop executes, the inner loop 

executes M times. As a result, the statements in the inner loop execute a total of N * 

M times. Thus, the complexity is O (N * M). In a common special case where the 

stopping condition of the inner loop is j < N instead of j < M (i.e., the inner loop also 

executes N times), the total complexity for the two loops is O (N2). When a loop is 

involved, the same rule applies.  

For example: 

for (j = 0; j < N; j++) g(N);  

Has complexity (N2). The loop executes N times and each time call g (N). 
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3.3 Best-case and Average-case Complexity [24] 
 

Some methods may require different amounts of time on different calls, even when 

the problem size is the same for both calls. For example, if add before is called with a 

sequence of length N, it may require time proportional to N (to move all of the items 

and/or to expand the array). This is what happens in the worst case. However, when 

the current item is the last item in the sequence, and the array is not full, add Before 

will only have to move one item, so in that case its time is independent of the length 

of the sequence; i.e., constant time. In general, there is a need to consider the best and 

average time requirements of a method as well as its worst-case time requirements. 

Which is considered the most important will depend on several factors. For example, 

if a method is part of a time-critical system like One that controls an airplane, the 

worst-case times are probably the most important (if the plane is flying towards a 

mountain and the controlling program can't make the next course correction until it 

has performed a computation, then the best-case and average case times for that 

computation are not relevant - the computation needs to be guaranteed to be fast 

enough to finish before the plane hits the mountain) [25]. 

On the other hand, if occasionally waiting a long time for an answer is merely 

inconvenient (as opposed to life-threatening), it may be better to use an algorithm 

with a slow worst-case time and a fast average-case time, rather than one with so-so 

times in both the average and worst cases. For add Before, for a sequence of length N, 

the worst-case time is O (N), the best-case time is O (1), and the average-case time 

(assuming that each item is equally likely to be the current item) is O (N), because on 

average, N/2 items will need to be moved. 

 

Note that calculating the average-case time for a method can be tricky. You need to 

consider all possible values for the important factors, and whether they will be 

distributed evenly. 
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3.4 Advantage and Disadvantage of Design strategy 
 

Design Strategy Use Advantage Disadvantage Example 

Brute force Defence 

methods 

(Strong 

passwords 

) And Game 

methods (Chess 

Game) 

Speeding up 

searches 

 

 

 

1. Does not uses 

any tactics or short 

cut 

2. Enhaustically 

checks for all 

notation space 

Selection sort, 

String 

matching, 

Exhaustive 

search 

Greedy 

algorithm 

Used for 

Solving meta 

heuristic 

Problem (A 

meta heuristic is 

a heuristic 

method 

(Heuristics are 

"rules of 

thumb", 

educated 

guesses, 

intuitive 

judgments or 

simply common 

sense.) for 

solving a very 

general class of 

computational 

problems by 

combining user-

given black-box 

procedures 

1. Very large 

Number of 

feasible solutions. 

2.Easy to 

implement 

1. It is much slower 

2. Does not give 

optimum result for 

all problems 

3. May be receiving  

1. Traveling 

salesman 

problem 

2. Scheduling 

problem 

Divide and 

conquer 

D&C algorithm 

that was 

specifically 

developed for 

computer and 

properly 

analyzed is the 

merge sort 

algorithm, 

invented by 

John von 

Neumann in 

1945. 

1.Solving difficult 

problems 

2. Algorithm 

efficiency 

3. Parallelism 

4. Memory access 

1. Conceptual 

difficulty 

2. Recursion 

overhead 

3. Repeated sub 

problems 

 

1. Tower of 

Hanoi  

2. Merge Sort 

 

Dynamic 

Programming 

Used for 

Solving 

problems 

Does not required 

repeated 

calculation 

1. Recursive 

formulation is 

difficult to make  

1. Fibonacci 

sequence 

2. Word wrap 
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exhibiting the 

properties of 

overlapping sub 

problems and 

optimal 

substructure 

 

Multidimension

al optimization 

problem 

2. Only for 

overlapping sub 

problems  

3. Interval 

scheduling 

4. Matrix-

chain 

multiplication 

problem 

Backtracking 

Algorithm 

Backtracking 

can be applied 

only for 

problems which 

admit the 

concept of a 

"partial 

candidate 

solution" and a 

relatively quick 

test[26]. 

1. quick test 

2. Pair matching 

3. Following real 

life concept 

1. Not widely 

implemented. 

 

2. Cannot express 

left-recursive rules 

3. More time & 

complexity  

Eight queens 

puzzle. 

Branch and 

bound 

 

1. Used for 

finding optimal 

solutions of 

various 

optimization 

problems, 

especially in 

discrete and 

combinatorial 

optimization. 

 

2. Branch and 

bound is a 

systematic 

method for 

solving 

optimization 

problems 

1. Very large 

Number of 

feasible solutions. 

 

2. Tightens the 

solution space 

often every step 

 

3. Proming 

possible  

1. Finding proming 

strategies require 

clever thinking 

technologies  

1. The Graph 

Partitioning 

Problem. 

 

2. The 

Quadratic 

Assignment 

Problem 

 

3. The 

Symmetric 

Traveling 

Salesman 

problem 

Decrease-and-

conquer 

It is used for 

Change an 

instance into 

one smaller 

instance of the 

problem 

Solve smaller 

instance 

Depends on 

Efficiency of 

sorting. 

Binary search  

Fake-coin 

puzzle 

Transform-and-

conquer 

Solve a 

problem’s 

instance by 

transforming it 

into another 

1. Fast  

2. Algorithm 

efficiency 

Not widely 

implemented 

Searching and 

sorting ( 

Telephone 

directories in 

sorted order) 
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simpler/easier 

instance of the 

same problem 

 

 

Table 3.1 Advantage and Disadvantage of Design strategy [4][20][26]. 

 
 

3.5 Type of problems  

 
There are many different problems, being discussed through different algorithm 

design strategies. Some problems are related to dynamic programming, optimization 

problem, hard problem etc. some problems are based on one or more type of 

algorithm design strategies need to find which algorithm strategies is best for a 

particular problem as well as suitable examples for a each problem. Some useful 

guidelines are available regarding the suitability of a particular technique to a 

problem, then a lot of time can be saved and algorithms may be developed only in that 

technique method. 

 
 

Type of Problem Algorithm Strategies Example 

 Multi-branched 

recursion. 

 Hard Problems 

 Sharing repeated sub 

problems 

 Overlapping sub 

problems 

 Optimal substructure 

 Memorization 

-Divide-and-conquer algorithms are 

naturally implemented as recursive 

procedures.  

It is solve the conceptual and 

optimization problem by caching sub 

problem solutions (memorization) 

rather than recomputing them 

- It is provide a natural way to design 

efficient algorithm. 

-The dynamic programming algorithm 

is suitable for the observe the 

dependency of the sub problem 

Fibonacci 

numbers, Towers 

of Hanoi, The 

Halting Problem, 

geometric curves, 

Closest-Points 

Merge sort 

 Optimization problems 

 Heuristic problem 

 Interval Scheduling 

-Brute force Is a straightforward 

approach. 

 -This is directly based on The 

problem’s statement and definitions of 

the concepts. 

Selection sort, 

String matching, 

Convex-hull 

problem, and 

Exhaustive 
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-Greedy algorithms can run faster than 

brute force ones.  

- It is not always greedy strategy tell  

the correct solution. 

search, Traveling 

salesman problem 

 Combinatorial 

optimization problems 

- Backtracking depends on user-given  

black box procedures. 

- Backtracking is a better approach 

than brute force (Independently 

evaluating all possible solutions)[27].  

Calculate the path 

(route)(Example 

the Traveling 

Salesman 

Problem, 

Minimum 

Spanning Tree 

Problem, N 

Queens, Time and 

space complexity 

- Useful when 

problem size is 

small - Integer 

linear programs 

(ILPs) problems 

 Representation problem Transform and Conquer algorithm 

basically change one instance to 

another instance of the problems so 

this type of the problem basically 

suitable for the transform and conquer 

algorithm. 

Heap sort, 

gaussian 

elimination, 

hashing, search 

trees 

 Global optimization 

problem 

 Test-Cover Problem 

- The branch and bound strategy 

divides a problem to be solved into a 

number of sub problems, similar to the 

strategy backtracking. 

- Branch and bound algorithm is 

Sometimes we can tell that a particular 

branch will not lead to an optimal 

solution: 

Travelling 

salesman problem 
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- The partial solution may already be 

infeasible 

-  Already have another solution that is 

guaranteed to be better than any 

descendant of the given solution 

Table 3.2 This table shown the types of the problems and define the algorithms and 

Example of algorithms [1][4][20]. 

 

3.6 Characteristic of problems 

Before choosing a best algorithm design strategies for a problem there is a need to 

know the characteristics of that problem. Those characteristics will be the basis to 

choose its strategy. To solve any problem the problem’s characteristics must be 

defined and what is purpose of choosing such algorithm strategy for that particular 

problem. i.e. (objective of selection).moreover what is use of this strategy for a 

problem. This is a first step to solve any problems. Some useful guidelines are 

available regarding the suitability of a particular technique to a problem, then a lot of 

time can be saved and algorithms may be developed only in that technique method. 

 

Type of problem Characteristic Purpose of use (Objective 

of Selection)  

 

Multi-branched 

recursion problem 

 Complete task solve by 

combining solutions to sub-

tasks. 

 Decompose a complete task 

into smaller, simpler sub-

tasks that are similar 

 Thus, each sub-task can be 

solved by applying a similar 

technique 

 The base case is the smallest 

problem that the routine 

solves and the value is 

returned to the calling method 

It's better when you can 

guarantee this things: 

1) each recursive step 

breaks down the problem 

into a smaller problem of 

the same type. 

2) Each recursive step 

reduces the problem 

significantly. 

3) Less memory required  

4) Distinct sub-problems 

can be executed on different 

processors (Parallelism) 
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[28]. 

 Calling a method involves 

certain overhead in 

transferring the control to the 

beginning of the method and 

in storing the information of 

the return point [28]. 

 Memory is used to store all 

the intermediate arguments 

and return values on the 

internal stack [28]. 

5) Recursive algorithm, 

there is considerable 

freedom in the choice of the 

base cases, the small sub 

problems that are solved 

directly in order to terminate 

the recursion. 

 

Memorization 

problem 

 Memorization is a technique 

used to speed up computer 

programs by storing the 

results of functions 

 Memorization is a reduce the 

power consumption and 

increase the performance. 

 Memorization is a 

characteristic of dynamic 

programming. 

 Functions can only be 

memorized if they are 

referentially transparent that 

is, if they will always return 

the same result given the 

same arguments. 

 Memorization does not 

change the values returned by 

a function. It only changes the 

performance characteristics of 

the function. 

1) Memorizing is a 

technique that can come in 

handy in programming 

situations where you’re 

performing a calculation 

that has input, and the same 

input always yields the same 

result. 

2) Memorize - Make 

functions faster by trading 

space for time 

Optimization  We are working on real- 1) Optimization is the 
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problems 

 

world, large-scale, hard 

optimization problems 

 Mostly Optimization problem 

is handle the mixed-integer 

and nonlinear programming 

problems. 

 Optimization problem is 

responsible for a bounded 

ness, linearity, convexity and 

monotonicity  

 Optimization problem is 

providing the feasible domain 

(Convexity) using the solving 

the problem. 

 Optimization problem is use 

of mathematical strategies to 

search for a optimum 

combinations. 

 Design optimization as 

systematic design 

improvement. 

collective process of finding 

the set of conditions 

required to achieve the best 

result from a given situation 

for a certain objective 

 

2) It is a very powerful 

technique for solving 

allocation problems 

3) It is solve a brainstorming 

problem and lateral thinking 

problem. 

4) Optimization techniques 

in PROC CALIS will find 

the correct solution. 

Heuristic problem  These methods in most cases 

employ experimentation and 

trial-and-error techniques 

 Heuristics are rules of thumb. 

 Heuristics are a way to 

improve time for determining 

an exact or approximate 

solution for NP-problems.  

 Heuristics are a way to 

improve time for determining 

an exact or approximate 

1) A heuristic method is 

particularly used to rapidly 

come to a solution that is 

reasonably close to the best 

possible answer, or optimal 

solution. 

2) Heuristic is control 

information according to the   

problem solving in human 

beings and machines 

3) Heuristics are a way to 

improve time for 
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solution for NP-problems.  determining an exact or 

approximate solution for 

problems.  

Interval 

scheduling 

problems 

 Interval scheduling problems, 

also known as fixed job 

scheduling or k-track 

assignment problems [29]. 

 Interval scheduling problems 

is that each job has a finite 

number of fixed processing 

intervals [29]. 

 These problems arise 

naturally in different real-life 

operations planning 

situations, including the 

assignment of transports to 

loading/unloading terminals, 

work planning for personnel, 

computer wiring, bandwidth 

allocation of communication 

channels, printed circuit board 

manufacturing, gene 

identification and examining 

computer memory structures. 

 Show its relations to cognate 

problems in graph theory, and 

survey existing models, 

results on computational 

complexity and solution 

algorithms. 

1) A simple flow problem 

formulation permits 

minimizing maximum 

lateness for the more 

general multimachine case. 

2) Performance measures 

here can focus on the 

individual jobs; for instance, 

one may wish to maximize 

the total weight of the 

accepted jobs.  

3) Interval scheduling allow 

taking into account the cost 

of rejecting (or the profit of 

accepting) an individual job. 

4) It is used in real-time 

operating systems. 

 

Activity Selection 

Problem 

 The main problem for action 

selection is complexity. 

 all computation takes both 

1) Find Optimal scheduling 

of unit time jobs with 

deadlines and penalties for 
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time and memory, agents 

cannot possibly consider 

every option available to them 

at every instant in time 

 The action selection 

mechanism determines not 

only the agent’s actions in 

terms of impact on the world, 

but also directs its perceptual 

attention, and updates its 

memory. 

missing the deadline. 

2) The activity-selection 

problem is to select the 

Maximum number of 

mutually compatible 

activities. 

 

Table 3.3 Characteristic of the problems [28][29][30] 

 

3.7 Details of Applicable Algorithms 

This table represents the list of problems and which algorithm strategies are 

applicable for it. There are some examples which are related to multi recursion 

problems, optimization problems etc. some problems are solved by one or more 

algorithm strategies. 

 

S.No Problem Applicable Algorithms 

  A B C D E F G 

1. Fibonacci numbers        

2. Towers of Hanoi,        

3. The Halting Problem        

4. Merge sort        

5. Selection sort,        

6. String matching        

7. Exhaustive search         

8. Traveling salesman problem        

9. Minimum Spanning Tree Problem        

10. Integer linear programs (ILPs) problems        

11. Heap sort,        
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12. Hashing, search trees        

13. Gaussian elimination        

Table 3.4 Details of Applicable Algorithms. 

 

A= Divide and Conquer Algorithm 

B= Dynamic programming Algorithm 

C=Brute force Algorithm 

D=Greedy algorithm 

E=Backtracking Algorithm 

F= Transform and Conquer algorithm 

G=Branch and bound algorithm 
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CHAPTER 4 

PROBLEM STATEMENT  

 
 

There exist a number of algorithms, every algorithm is problem specific. The choice 

of an algorithm may not just depend on computational complexity; it also depends 

upon the characteristics, advantages and disadvantages. This report shows how an 

algorithm is best for a particular situation, based upon their advantages and 

comparison with others. The problem of choosing the best algorithm design strategy 

arises frequently in a computer programming. How one can predict an algorithm is 

best for a particular problem? What makes a good design strategy for an algorithm? 

Speed is probably the top consideration, but other factors of interest includes 

versatility in handling various data types, consistency of performance, memory 

requirements, length and complexity of code, and the property of stability. 

 

There are some advantages and disadvantages in every algorithm design strategy, 

which are known and this disadvantage leads to various algorithm design strategy to 

solve a particular problem. Some algorithm design strategies are problem specific 

means they are well suited for some specific problem and have disadvantage against 

another problem. One objective is that, after applying different strategies for a 

particular problem, a set of guidelines can be given that how a particular category of 

algorithm design strategy is better for a particular set of problems. 
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CHAPTER 5 

                                                       RESULT & CONCLUSION  

 
 

5.1 Different Algorithm Design Strategies to solve the Problems 
 

Several design technique are applied to a single problem. These design technique is 

Brute Force, Dynamic Programming, Branch and Bound, Greedy Algorithms, divide 

and conquer, backtracking, decrease and conquer and transfer and conquer algorithm. 

This design technique to solve the different Problem. The main goal of this report is to 

compare the results of these algorithms and find the best one. 

 

5.1.1. The Knapsack Problem  

 
The Knapsack Problem is an example of a combinatorial optimization problem, which 

seeks for a best solution from among many other solutions. Given a set of items, each 

with a weight and a value, determine the number of each item to include in a 

collection so that the total weight is less than a given limit and the total value is as 

large as possible. It derives its name from the problem faced by someone who is 

constrained by a fixed-size knapsack and must fill it with the most useful items . 

 

Different Design Strategies  
 

Algorithm Design Strategies  

Brute Force  It will be 2
n
 possible combinations of items for 

the knapsack. 

 It is used for small instance of the knapsack 

problem. 

 It does not require much programming effort. 

 It can be represented as tree format. 

Dynamic Programming  Dynamic programming algorithm to derive a 

recurrence relation that expresses a solution to an 

instance of the problem in terms of solutions to 

its smaller instances [18]. 

 It does not require any additional structures. 
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Greedy Algorithm  Greedy programming techniques are used in 

optimization problems. 

 Possible greedy strategies to the 0/1 Knapsack 

problem: 

o First of all choose maximum value from 

the remaining items and increases the 

value of the knapsack. 

o Select the lightest item from the 

remaining items, which uses up capacity 

as slowly as possible allowing more items 

to be stuffed in the knapsack. 

o Select the items with as high a value per 

weight as possible. 

 We implement and test all strategies. We got the 

best results is select the items with as high value-

to-weight ratios as possible. 

Branch and Bound  This approach solves some large instances of 

difficult combinatorial problems. 

 Branch and bound is based on the state space 

tree. 

 In the worst case, the branch and bound 

algorithm will generate all intermediate stages 

and all leaves 

 The tree will be complete and will have 2
n-1

 – 1 

nodes, i.e. will have an exponential complexity. 

 It is better than the brute force algorithm because 

on average it will not generate all possible nodes.  

 The required memory based on the length of the 

priority queue. 

Backtracking  It is based on item weights and values, find the 

combination of items to include in the knapsack 

that will maximize the value, subject to a weight 

limitation. 
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 The current value of the partial knapsack 

probably cannot be used. 

 The development without a full branch-and-

bound implementation. 

 Backtracking would be much more effective if 

we had even more items or a smaller knapsack 

capacity [31]. 

Table 5.1.1 Different Algorithm Design Strategies to solve the 0/1 Knapsack Problem  

 

For the comparison of the different algorithm design technique, files of different sizes 

are generated. There are two type of comparison.  

 Increasing the number of items to the knapsack 

 Increasing the capacity of the knapsack 

These constraints related to number of item and capacity.  

 

5.1.2. The Traveling Sales Man problem 
 

The traveling salesman problem is considered the most prominent unsolved 

combinatorial optimization problems and to be sure, the best that existing solution 

methods can do is to handle relatively small traveling sales man problem or large 

problems with special methods. 

 

Different Design Strategies  
Algorithm Design Strategies  

Brute Force  Seems to be the obvious solution. 

 Computationally expensive- turns out to be O 

(n!). 

 The brute-force method is to simply generate all 

possible routes and compare the distances. 

 The time required to come up with a solution is 

n! 

Dynamic Programming  Dynamic Programming Algorithm solves the 

respective problem in only O (n
2
2

n
). 

 Dynamic-programming algorithm for solving 
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Traveling Sales man Problem with a special type 

of precedence constraints. 

 We have applied our procedure to solving 

Traveling Sales man Problem with time, 

scheduling problems, release and delivery times, 

in delivery problems, and in routing. 

Greedy Algorithm  It is based on Kruskal's algorithm. It only gives a 

sub optimal solution in general [32]. 

 Works for complete graphs. May not work for a 

graph that is not complete. 

 As in Kruskal's algorithm, first sort the edges in 

the increasing order of weights. 

 Starting with the least cost edge, look at the 

edges one by one and select an edge only if the 

edge, together with already selected edges, 

1. Does not cause a vertex to have degree 

three or more. 

2. Does not form a cycle, unless the number 

of selected edges equals the number of 

vertices in the graph. 

Branch and Bound  An enhancement of backtracking. 

 The branch-and-bound algorithm does not limit 

us to any particular way of traversing the tree. 

 It is used only for optimization problems. 

 The backtracking algorithm requires the using of 

DFS traversal and is used for non-optimization 

problems 

Backtracking  Backtracking is a general technique for 

organizing the exhaustive search for a solution to 

a combinatorial problem. 

 The backtracking technique can be applied to 

those problems that exhibit the domino principle. 
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 If a constraint is not satisfied by a partial 

solution, the constraint will not be satisfied by 

any extension of the partial solution to a global 

solution. 

Heuristic Algorithm  It is often called as a difficult problem. 

 Traveling cost is the minimum. 

 We are not aware of any other quick algorithm 

that finds a best solution we will use a heuristic 

algorithm. 

 Heuristic Algorithm solves the respective 

problem in only N
2
 

Table 5.1.2 Different Algorithm Design Strategies to solve The Traveling Sales Man 

problem. 

 

Comparison of dynamic-programming algorithm, heuristic algorithm, brute force, 

greedy algorithm branch and bound algorithm and backtracking for solving TSPs with 

a precedence constraint. These constraints related to delivery time, scheduling, 

routing.  

 

5.1.3 The Closest pair of point’s problem 

 

The closest pair of point’s problem or closest pair problem is a problem of 

computational geometry. Find a pair of points with the smallest distance between 

them. Algorithm of finding distances between all pairs of points and selecting the 

minimum requires O(dn
2
) time. It turns out that the problem may be solved in O(n log 

n) time. The optimality follows from the observation that the element uniqueness 

problem (with the lower bound of Ω(n log n) for time complexity) is reducible to the 

closest pair problem: checking whether the minimal distance is 0 after the solving of 

the closest pair problem answers the question whether there are two coinciding points. 

 

Different Design Strategies  
 

Algorithm Design Strategies  

Divide & Conquer  Divide the problem into two equal sized sub 

problems 
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 Solve those sub problems recursively 

 Merge the sub problem solutions into an overall 

solution and hence takes O (nlogn) time. 

 Divide: Sort the points by x- coordinate; draw 

vertical line to have roughly n/2 points on each 

side. 

 Conquer: find closest pair in each side 

recursively. 

 Combine: Find closest pair with one point in 

each side. 

Brute Force  The closest pair of points can easily be computed 

in O(n²) time 

 To do that, one could compute the distances 

between all the n(n-1)/2 pairs of points, then pick 

the pair with the smallest distance. 

Branch and Bound  Select good branching. 

 Store the information in a stack format.  

 Not effective, because data is stored in different 

location. 

 It is very difficult monitor of the data 

 User facing the Leakage memory problem. 

Backtracking  The closest pair of points problem asks for the 

minimal number of tests needed to uniquely 

identify a disease infection. 
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Heuristic Algorithm  It is more flexible design systems but not 

guarantee that the solution found is optimal. 

 It is a efficient and flexible 

 It is able to produce an acceptable solution to a 

problem in many practical scenarios but for 

which there is no formal proof of its correctness. 

 In practical problems, a heuristic algorithm may 

be the only way to get good solutions in a 

reasonable amount of time. 

Table 5.1.3 Different Algorithm Design Strategies to solve The Closest pair of point’s 

problem. 

 

5.1.4 The N-Puzzles Problem 
  

The N-puzzle problem provides a good framework for describing a concept of AI. 

This concept is related to the various uninformed and informed search algorithms. 

This is usually applied in this setting and their performance is evaluated.  

  

Different Design Strategies  
  

Algorithm Design Strategies   

Brute Force  Brute-force approach to solving problems in 

  Explicitly  

  Implicitly  

 Combinatorial objects such as permutations, 

combinations, and subsets of a given set. It 

suggests generating all the elements of the 

problem's domain and then finding a desired 

element (e.g., the one that optimizes a given 

objective function). 

 In fact, many puzzles can provide good examples 

of problems that either cannot be solved by brute 

force at all, or for which this strategy yields a 

very clumsy and unsatisfactory solution. 
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 Puzzles that can be solved by brute force, one 

can suggest, for example, getting the 3-by-3 

magic square by exhaustive search. It provides a 

good illustration of the limitations of exhaustive 

search and the usefulness of knowing an 

algorithm's efficiency class. 

Divide-and-conquer  Few puzzles solvable by the divide-and-conquer 

approach. Here are two examples that are rather 

well known.  

o The first one is the triomino puzzle. 

o The other problem is the nuts-and-bolts 

problem. 

 Divide-and-conquer is based on partitioning. 

 Solving each of them recursively, and then 

combining their solutions to get a solution to the 

original problem. 

Decrease-and-conquer  The decrease-by-a-constant variety suggests 

decreasing a problem's size by a constant. 

 This approach is considered by some to be a 

special case of divide-and conquer, it is better to 

consider them as distinct design strategies. 

 The crucial difference between the two lies in the 

number of smaller sub problems that need to be 

solved: several (usually, two) in divide-and-

conquer algorithms and just one in decrease-and-

conquer algorithms. It is further useful, both from 

the design and the analysis perspectives, to 

distinguish three varieties of this strategy 

o Decrease-by-a-constant variety 

o Decrease-by-a-constant-factor, 

o Variable-size  

Transform-and-conquer  The last most general technique is based on the idea 

of transformation. 
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 Its first variety called instance simplification. 

 The Second variety called Representation 

change. 

 The third variety of the transformation 

strategy is problem reduction. 

Table 5.1.4 Different Algorithm Design Strategies to solve The N-Puzzles Problem. 

 

N-Puzzles can be very helpful for different algorithm design technique. Two type of 

algorithm design techniques are considered 

 The Most general algorithm design techniques like: brute force, divide and- 

conquer, decrease-and-conquer, and transform-and conquer and 

 Less general techniques like: greedy, dynamic programming, backtracking, 

and branch-and-bound.  

 

According to my research for future more puzzles suitable for algorithm design 

technique and analysis of algorithms will be found in will be found in existing 

collections or specifically designed for this worthy purpose 

 

The objective of the analysis in these tables is that if a new problem arises then based 

on the inherent characteristics of the problem, it can be categorized in to particular 

category and then right algorithm can be written. Using the given strategies some odd 

problems were taken from different sources and the result was, ability to figure out 

exact strategies to be used for 67% of the problems in the first instance. For 9% of the 

problems, two different strategies were tried to get the efficient algorithm; because the 

characteristics of these problem does not exactly points to a particular strategy. The 

remaining 24% could not be categorized into any of the above categories or they were 

looking similar to multiple categories. So initially it is a good to start and the research 

will continues further to improve these results so that more problems can be 

categorized and solved in first instance.   
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