
Choosing Best Algorithm Design Strategies
For a Particular Problem

Thesis submitted in partial fulfillment of the requirements for the award

of Degree of

Master of Engineering

in

Software Engineering

By:

Name: Shailendra Kumar Nigam

Roll No: 80731021

Under the supervision of:

Dr. Deepak Garg

Assistant Professor, CSED

&

Mr. Ravinder Kumar

Lecturer, CSED

COMPUTER SCIENCE AND ENGINEERING DEPARTMENT

THAPAR UNIVERSITY

PATIALA – 147004

JUNE 2009

 iii

ABSTRACT

Algorithms have come to be recognized as the cornerstone of computing. Algorithm design

strategies are typically organized either by application area or by design technique. This

report describes different designing algorithms such as Brute force, Greedy, Divide and

Conquer, Dynamic programming, Backtracking, Branch and Bound and many more. It

describes how a particular algorithm is used for a specific problem. This report also

proposes how to choose the best algorithm design strategy for a particular problem to

facilitate the development of best algorithms based upon algorithm design strategy

techniques. It also describes how a particular algorithm is used for a specific problem.

Taking various parameters does a comparison of various algorithms. This report advocates

a wider use of different problems in teaching the best algorithm design strategies.

 iv

 Table of Contents

Certificate………………………………………………………………………………… i

Acknowledgment………………………………………………………………………… ii

Abstract…………………………………………………………………………………... iii

Table of Contents………………………………………………………………………... iv

List of Tables…………………………………………………………………………….. vi

List of Figures……………………………………………………………………………. vii

CHAPTER 1:INTRODUCTION 1

1.1 Introduction…………………………………………………………………………. 1

1.2 How to design algorithms…………………………………………………………... 2

1.3 How to Express Algorithms………………………………………………………… 3

1.4 Fundamental Concepts of Algorithm……………………………………………….. 3

CHAPTER 2: CONCEPT OF ALGORITHMS DESIGN STRATEGIES 5

2.1 Brute Force Algorithms…………………………………………………………….. 5

2.2 Greedy Algorithms…………………………………………………………………. 7

2.3 Divide and Conquer………………………………………………………………… 10

2.4 Dynamic Programming……………………………………………………………... 14

2.5 Backtracking Algorithm……………………………………………………………. 16

2.6 Branch and Bound Algorithm………………………………………………………. 17

2.7 Decrease & conquer Algorithm…………………………………………………….. 20

2.7.1 Depth first search…………………………………………………………….. 22

2.7.2 Breadth-First Search Algorithm……………………………………………… 23

2.8 Transfer and Conquer………………………………………………………………. 24

CHAPTER 3: COMPARISON OF ALGORITHM DESIGN STRATEGIES 25

3.1 Different Notation for Calculating Complexity…………………………………... 25

3.1.1 Big-O Notation……………………………………………………………… 26

3.1.2 Theta Notation………………………………………………………………. 26

 v

3.1.3 Omega Notation…………………………………………………………….. 27

3.2 How to Determine Complexities………………………………………………….. 27

3.3 Best-case and Average-case Complexities………………………………………... 29

3.4 Advantage and Disadvantage of Design strategy…………………………………. 30

3.5 Type of Problems………………………………………………………………… 32

3.6 Characteristic of problems……………………………………………………… 34

3.7 Details of Applicable algorithms………………………………………………… 38

CHAPTER 4: PROBLEM STATEMENT………………………………………………. 40

CHAPTER 5: RESULTS AND CONCLUSION……………………………………… 41

ANNEXURES

I. REFERENCES: ………………………………………………………………………... 50

II. LIST OF PUBLICATIONS……………………………………………………………. 53

 vi

List of Tables

Table 3.1 Advantage and Disadvantage of Design strategy……………….………… 32

Table 3.2 This table shown the types of the problems and define the algorithms and

Example of algorithm……………………………………………………..

34

Table 3.3 Characteristic of the problems……………………………………………. 38

Table 3.4 Details of Applicable Algorithms………………………………………… 39

Table 5.1.1 Different Algorithm Design Strategies to solve the 0/1 Knapsack

Problem……………………………………………………………………

43

Table 5.1.2 Different Algorithm Design Strategies to solve The Traveling Sales Man

problem…………………………………………………………………….

45

Table 5.1.3 Different Algorithm Design Strategies to solve The Closest pair of

point’s problem……………………………………………………………

47

Table 5.1.4 Different Algorithm Design Strategies to solve The N-Puzzles Problem… 49

 vii

List of Figures

Figure 2.1 Divide and Conquer………………………………………….…………. 14

Figure 2.2 Puzzle Problem…………………………………………………………. 17

Figure 2.3 Branch and bound Assignment problem……….…………….………… 19

Figure 2.4 Optimal Substructure…………………………………………………… 20

Figure 2.5 Decrease-And-Conquer algorithm……………………………………… 21

Figure 2.6 Decrease by a constant factor…………………………………………... 21

Figure 2.7 Step of Transfer and conquer algorithm………………………………... 24

Figure 3.1 Big O Notation Graph………………………………………………….. 26

Figure 3.2 Theta Notation Graph…………………………………………………... 27

 1

CHAPTER 1

INTRODUCTION

1.1 Introduction

Our studies reveal how people design algorithms those that principal design methods

are used based upon some parameters in the absence of specific knowledge and belief

that these parameters will play an equally important role in the design of algorithms.

A study of algorithms has come to be recognized as the cornerstone of computer

science. The progress in this field to date, however, has been very uneven. While the

framework for analysis of algorithms has been firmly established and successfully

developed for quite some time, much less effort has been devoted to algorithm design

techniques.

This comparative lack of interest is surprising and unfortunate in view of the two

important payoffs in the study of algorithm design techniques: “First, it leads to an

organized way to devise algorithms. Algorithm design techniques give guidance and

direction on how to create a new algorithm. Though there are literally thousands of

algorithms, there are very few design techniques. Second, the study of these

techniques help us to categorize or organize the algorithms. Although some

algorithms design strategies are better than others on average, there is rarely a best

algorithm design strategies for a given problem. Instead, it is often the case that

different algorithms design strategies perform well on different Problem instances [1].

Not surprisingly, this phenomenon is most pronounced among algorithms for solving

hard problems, because runtimes for these algorithms design strategy are often highly

variable from instance to instance. Choosing best algorithm design strategy is one of

the most difficult decisions. Algorithm design is a specific method to create a

mathematical process in solving problems. Applied algorithm design is algorithm

engineering. Techniques for designing and implementing algorithm designs are

algorithm design patterns, such as template method patterns, decorator patterns, uses

of data structures, and name and sort lists. Some current uses of algorithm design can

be found in Internet retrieval processes of web crawling packet routing and caching

[2]. Use employ evolving design strategy to make algorithm. The initial design is a

 2

correct, if inefficient, solution to the problem but may not be highly efficient each

subsequent design is an improvement or optimization of the prior design and the final

design is an optimal, algorithm for solving the problem. At each stage optimized

strategy is applied and the effect on algorithmic complexity is derived. As each

transformation is considered, additional abstractions Necessary to express the design

strategies are introduced.

The pedagogical advantages of the successive design strategy include:

 Students see design principles applied in a precise context.

 A succession of different principles is applied in the stages of the design for a

single problem. This models the design process in the real world.

 At each stage, the demonstration of correctness requires showing only correctness

relative to the preceding algorithm.

1.2 How to Design Algorithms

Creating an algorithm design is an art, which may never be fully automated. Various

algorithm design techniques that have proven to be useful in that they have often

yielded good algorithms. By mastering these design strategies, it will become easier

for you to devise new and useful algorithms. Algorithm is a method for solving a

computational problem and algorithm design is identified in many solution theories of

operation research, such as divide and conquer, dynamic programming and greedy

algorithm.

The Techniques for designing and implementing algorithm design is based on

template method patterns, data structures etc. A Design technique is often expressed

in pseudocode as a template that can be particularized for concrete problems [3]. This

template name is algorithm schemas. Algorithm schemas consist on identifying

structural similarities among algorithms that solve different problems. Programming

language such as algorithmic language, COBOL, FORTRAN, PASCAL, SAIL are

computing tools to implement an algorithm design. But algorithm design is not a

programming tool. Algorithm design basically mathematical process of writing a

finite set of steps each of which may require one or more operations.

 3

1.3 How to Express Algorithms

Algorithm design can be expressed in many kinds of notation like flowcharts,

programming language, rational rose tool, computer aided design applications and

pseudocode etc. flowcharts and rational rose are expressed in structured way and

avoid the ambiguities in language statements. Computer-Aided Design (CAD), also

known as Computer-Aided Drafting, is the use of computer software and systems to

design and create 2D and 3D virtual models of goods and products for the purposes of

testing. It is also sometimes referred to as computer assisted drafting. Programming

languages are primarily intended for expressing algorithms in a form that can be

executed by a computer, but are often used as a way to define or document

algorithms.

Once an algorithm is devised, it is necessary to show that it computes the correct

answer for all possible legal inputs. The algorithm need not as yet be expressed as

program. It is sufficient to state it in any precise way. The purpose of assures that this

algorithm will work correctly independently of the issues concerning the

programming language it will eventually be written in [4].

1.4 Fundamental Concepts of Algorithm

There are two fundamental concepts of algorithm

 Functional correctness

 Proof of correctness

1.4.1 Functional Correctness [5].

Functional correctness is depend on the following

 Precondition: Algorithm is correct if every data that satisfy some condition

that is called precondition of the algorithm

 Post condition: The out put data satisfy a certain predefined condition that is

called post condition of the algorithm.

 4

1.4.2 Proofs of Correctness of Algorithms [6].

Correctness of algorithm is depends on the two issues

 Given an algorithm prove that it is correct. It is always achieves the intended

result

 Design an algorithm with intended properties from scratch. This is even more

difficult.

Proof of correctness also depends on the mathematical proof. Whenever algorithm is

run on a set of inputs that satisfy the problems precondition is expected to hold before

the method is executed. Post condition what holds after the method is executed. A

proof that a program is correct often has two pieces (that can be developed separately)

 Proof of partial correctness [7]: This is a proof that, whenever an algorithm

is run on a set of inputs satisfying the problem’s precondition, either

o The algorithm halts, and the outputs (and inputs) satisfy the problem’s

post condition, or

o The algorithm does not halt at all.

 Proof of termination [7]: This is a proof that the algorithm always halts,

whenever it is run on a set of inputs that satisfy the precondition.

 5

CHAPTER 2

CONCEPT OF ALGORITHMS DESIGN STRATEGIES

2.1 Brute Force Algorithms

Definition: An algorithm that inefficiently solves a problem, often by trying every one

of a wide range of possible solutions

Main Approach

 Generate and evaluate possible solutions until

o Satisfactory solution is found.

o Best solution is found.

o All possible solutions found

 Return best solution

 Return failure if no satisfactory solution.

 Generally most expensive approach.

Description

A brute force algorithm simply tries all possibilities until a satisfactory solution is

found such an algorithm can be:

 Optimizing: Find the best solution. This may require finding all solutions, or

if a value for the best solution is known, it may stop when any best solution is

found

 Satisfying: Stop as soon as a solution is found that is good enough

Brute force algorithm is require exponential time and used in various heuristics and

optimizations can be used

Heuristic: A rule of thumb that helps you decide which possibilities to look at first.

Optimization: In this case, to eliminate certain possibilities without fully exploring

them [8].

The C code [9]

Void BF (char *x, int m, char *y, int n) {

 6

int i, j;

/* Searching */

for (j = 0; j <= n - m; ++j)

{

for (i = 0; i < m && x[i] == y[i + j]; ++i);

if (i >= m)

OUTPUT(j);

}

Strengths:

 Wide applicability

 Simplicity

 Yields reasonable algorithms for some important problems

o Searching, string matching, matrix multiplication

 Yields standard algorithms for simple computational tasks

o Sum or product of n numbers, finding max or min in a list

Weaknesses:

 Rarely yields efficient algorithms

 Some brute force algorithms unacceptably slow

 Not as constructive/creative as some other design techniques

Example 1: Traveling salesman problem

Question: Given n cities with known distances between each pair, find the shortest

tour that passes through all the cities exactly once before returning to the starting city.

Example:

a b

c d

8

2

7

5 3
4

 7

Tour Cost

 a→b→c→d→a 2+3+7+5 = 17

 a→b→d→c→a 2+4+7+8 = 21

 a→c→b→d→a 8+3+4+5 = 20

 a→c→d→b→a 8+7+4+2 = 21

 a→d→b→c→a 5+4+3+8 = 20

 a→d→c→b→a 5+7+3+2 = 17

2.2 Greedy Algorithm [10]

The greedy algorithm is perhaps the most straightforward design technique. It can be

applied to a wide variety of problem. Most though not all of these problems have n

inputs and require us to obtain a subset that satisfies some constraints. Any need to

find a feasible solution that either maximizes or minimizes a given objective function.

A feasible solution that does this is called an optimal solution.

Note: greedy algorithm avoid backtracking and exponential time O(2
n
)

Greedy algorithms work in phases. In each phase, a decision is made that appears to

be good, without regard for future consequences E.g. Kruskal’s MST algorithm,

Dijkstra’s algorithm [11].

Definition

Greedy algorithm work in phases. In each phase, a decision is made that appears to be

good, without regard for future consequences. Generally, this means that some local

optimum is chosen. Greedy algorithm to find minimum spanning tree. Want to find

set of edges [12].

Note: Prim’s algorithm and Kruskal’s algorithm are greedy algorithms that find the

globally optimal solution, a minimum spanning tree. In contrast, any known greedy

algorithm to find a Hamiltonian cycle might not find the shortest path, that is, a

solution to the traveling salesman problem. If there is no greedy algorithm that always

finds the optimal solution for a problem, one may have to search (exponentially)

many possible solutions to find the optimum. Greedy algorithms are usually quicker,

since they don’t consider the details of possible alternatives

 8

Type of Greedy Algorithm

There are three type of greedy algorithms

 Pure Greedy Algorithms

 Orthogonal Greedy Algorithms

 Relaxed Greedy Algorithms

General Characteristics of Greedy Algorithms [13]

Commonly, greedy algorithms and the problems they can solve are characterized by

most or all of the following features.

 To construct the solution of our problem, a set (or list) of candidates is

required: the coins that are available, the edges of a graph that may be used to

build a path, the set of jobs to be Scheduled, or whatever.

 As the algorithm proceeds, two other sets are accumulated. One contains

candidates that have already been considered and chosen, while the other

contains candidates that have been considered and rejected.

 There is a function that checks whether a particular set of candidates provides

a solution to our problem, ignoring questions of optimality for the time being.

For instance, do the coins add up to the amount to be paid? Do the selected

edges provide a path to the node to reach? Have all the jobs been scheduled?

 A second function checks whether a set of candidates is feasible, that is,

whether or not it is possible to complete the set by adding further candidates

so as to obtain at least one solution to our problem. Here too, the time being

concerned is not with optimal1ty.

 Yet another function, the selection function, indicates at any time which of the

remaining candidates, that have neither been chosen nor rejected, is the most

promising.

 Finally an objective function gives the value of a solution found: the number

of coins used to make change, the length of the path constructed, the time

needed to process all the jobs in the schedule, or whatever other values are

trying to optimize. Unlike the three functions mentioned previously, the

objective function does not appear explicitly in the greedy algorithm.

 9

Example: - Scheduling

Given jobs j1, j2, j3, ..., jn with known running times t1, t2, t3, ..., tn. what is the best

way to schedule the jobs to minimize average completion time?

Job Time

J1 16

J2 8

J3 3

J4 14

Scheduling

J1 J2 J3 J4

 16 24 27 41

Average completion time = (16+24+27+41)/4 = 27

J3 J2 J4 J1

 3 11 25 41

Average completion time = (3+11+25+41)/4 = 20

Description

 Greedy-choice property: if shortest job does not go first, the y jobs before it

will complete 3 time units faster, but j3 will be postponed by time to complete

all jobs before it

 Optimal substructure: if shortest job is removed from optimal solution,

remaining solution for n-1 jobs is optimal

Optimality Proof

•Total cost of a schedule is

 N

 ∑(N-k+1)tik

 k=1

 t1 + (t1+t2) + (t1+t2+t3) ... (t1+t2+...+tn)

 N

 (N+1)∑tik - ∑k*tik

 10

 k=1

•First term independent of ordering, as second term increases, total cost becomes

smaller

Suppose there is a job ordering such that x > y and tix < tiy Swapping jobs (smaller

first) increases second term decreasing total cost

Show: xtix + ytiy < ytix + xtiy

xtix + ytiy = xtix + ytix + y(tiy - tix)

 = ytix + xtix+ y(tiy - tix)

 < ytix + xtix+ x(tiy - tix)

 = ytix + xtix+ xtiy - xtix = ytix + xtiy

2.3 Divide and Conquer

Divide and conquer algorithm suggests splitting the inputs into distinct subsets. These

sub problems must be solved and then a method must be found to combine sub

solutions into a solution of the whole. If the sub problems are still relatively large,

then the divide and conquer strategy can be possibly be reapplied. Often the sub

problems resulting from a divide and conquer design are of the same type as the

original problem. For those cases the reapplication of the divide and conquer principle

is naturally expressed by a recursive algorithm. This algorithm technique is the basis

of efficient algorithms for all kinds of the problems, such as quick sort, merge sort

and discrete Fourier transform. Its application to numerical algorithms is commonly

known as binary splitting [4].

Divide-and-conquer algorithm works as follows:

 Divide and conquer algorithm are divided into several smaller instances of the

same problem and same size.

 The smaller instances are solved by recursively.

o Sometimes, a different algorithm is applied when instances become

small enough.

 The smaller instances are combined and to get a solution to the original

problem.

o No necessary to combine in some cases.

 11

 Divide-and-conquer technique is ideally suited for parallel computers, in

which each sub problem can be solved simultaneously by its own processors.

 Common case: Dividing a problem into two smaller problems

Algorithm of Divide and Conquer

1. Algorithm D-and-C (n: input size)

2. If n ≤ n0 /* small size problem*/

3. Solve problem without further sub-division;

4. Else

5. Divide into m sub-problems;

6. Conquer the sub-problems by solving them

7. Independently and recursively; /* D-and-C (n/k) */

8. Combine the solutions;

EXAMPLES:

o Binary search

o Powering a number

o Fibonacci numbers

o Matrix multiplication

o Strassen’s algorithm

o VLSI tree layout

Divide and Conquer

Divide: P => P1,…………….Pk

Conquer: S (P1),……………...S (Pk)

Merge: S (P1),………………., S (Pk)=> S(P)

Examples: Sorting (merge sort and quick sort), searching (binary search), closest pair

(the O (n log n) algorithm), and selection (the linear-time algorithm).

Algorithm template:

 Function P(n)

 if n <=c

 Solve P directly

 Return its solution

 12

 Else P => P1, ..., Pk //divide

 For i = 1 to k

 Si = P(ni) //conquer

 S1, ..., Sk => S //merge

 return S

Time complexity:

Strassen’s algorithm

-Given A=(aij) nxn and B=(bij) nxn.

– First algorithm:

for i = 1 to n

for j = 1 to n

c[i,j] = 0

for k = 1 to n

c[i,j] = c[i,j] + a[i,k] * b[k,j]

 Time complexity: O (n
3
)

- Second algorithm:

C11 = A11 B11+ A12 B21

C12 = A11 B12 + A12 B22

C21=A21 B11 + A22 B21

C22 =A21 B12 +A22 B22

 13

So the multiplication of two n x n matrices becomes eight multiplications of two n/2 x

n/2 matrices, giving us T (n)=8T(n/2) +O (n
2
). By iterating, we have T (n)=O (n

3
). No

improvement!

M1 (A12 –A22) (B21 +B22)

M2 (A11 + A22) (B11 + B22)

M3 (A11 – A21) (B11 + B12)

M4 (A11 + A 12) B22

M5 A11 (B12 – B22)

M6 A22 (B21 – B11)

M7 (A21 + A 22) B11

C11 M1 – M2 - M4 + M6

C12 M4 + M5

C21 M6 + M7

C22 M2 – M3 + M5 - M7

Using the above idea in the algorithm, we get

T (n) = 7T(n/2)+O(n
2
), thus T(n) = O(n

log7
) = O(n

2.81
)

By iterating

 14

 Figure 2.1 Divide and Conquer

2.4 Dynamic programming [4][14]

Dynamic programming is an algorithm design method that can be used when the

solution to a problem can be viewed as the result of a sequence of decisions. Dynamic

programming is a similar to divide and conquer algorithm. It is express solution of a

problem in terms of solutions to sub problems. The Key difference is between

dynamic programming and divide and conquer is that while sub problems in divide

and conquer are independent, sub problems in dynamic programming may them

selves share sub problems. This means that if these were treated as independent sub

problems, the complexity would be higher. Dynamic programming is typically used to

solve optimization problems. In bioinformatics, the most common use of dynamic

programming is in sequence matching and alignment.

 To begin, the word programming is used by mathematicians to describe a set

of rules, which must be followed to solve a problem.

 Thus, linear programming describes sets of rules which must be solved a

linear problem.

 In our context, the adjective dynamic describes how the set of rules works.

 In this course, a number of examples of recursive algorithms are seen.

Problem of size n

Subproblem1 of

size n/2

Subproblem2 of

size n/2

Solution to sub problem 1 Solution to sub problem 2

Solution to the original

Problem

 15

 The run time of these algorithms may be found by solving the recurrence

relation itself.

 The first example of a dynamic program is a technique for solving the

following recurrence relation [9].

 You will recall that this defines the Fibonacci sequence of integers:

1, 1, 2, 3, 5, 8, 13, 21, 33, 54,...

Example

// Calculate the nth Fibonacci number

Double F(double n) {

 if (n <= 1) {

 return 1.0;

 } else {

 return F(n – 1) + F(n – 2);

 }

}

 Recall definition of Fibonacci numbers: f(0) = 0

f(1) = 1

f(n) = f(n-1) + f(n-2)

 Compute the nth Fibonacci number recursively (top-down)

 f(n)

 f(n-1) + f(n-2)

f(n-2) + f(n-3) f(n-3) + f(n-4)

Example: Fibonacci numbers (2)

Compute the nth Fibonacci number using bottom-up iteration:

1. F (0) = 0

2. F (1) = 1

3. F (2) = 0+1 = 1

12F1F

11

01

F

nnn

n

n

n

 16

4. F (3) = 1+1 = 2

5. F (4) = 1+2 = 3

6. F (n-2) =

7. F (n-1) =

8. F (n) = f (n-1) + f (n-2)

Example: Computing binomial coefficients

Algorithm Based On Identity

 Algorithm Binomial (n,k)

 for i <- 0 to n do

1. for j <-0 to min(j,k) do

2. if j=0 or j=i then C[i,j] ß 1

3. else C[i,j]ßC[i-1,j-1]+C[i-1,j]

4. return C[n,k]

 Pascal’s Triangle

2.5 Backtracking Algorithm [4][15]

Backtracking algorithm represents one of the most general techniques. Many

problems which deal with searching for a set of solutions or which ask for an optimal

solution satisfying some constraints can be solved using the backtracking formulation.

Many of the problems being solved using backtracking require that all the solutions

satisfy a complex set of constraints. For any problem these constraints can be divided

into two categories explicit and implicit.

 View the problem as a sequence of decisions

 Systematically considers all possible outcomes for each decision

 Backtracking algorithms are like the brute-force algorithms

 However, they are distinguished by the way in which the space of possible

solutions is explored

 Sometimes a backtracking algorithm can detect that an exhaustive search is

not needed

Example: - Solving a maze

 Given a maze, find a path from start to finish

 17

 At each intersection, you have to decide between three or fewer choices:

o Go straight

o Go left

o Go right

 You don’t have enough information to choose correctly

 Each choice leads to another set of choices

 One or more sequences of choices may (or may not) lead to a solution

 Many types of maze problem can be solved with backtracking

Solving a puzzle

 In this puzzle, all holes but one are filled with white pegs

 You can jump over one peg with another

 Jumped pegs are removed

 The object is to remove all but the last peg

 You don’t have enough information to jump correctly

 Each choice leads to another set of choices

 One or more sequences of choices may (or may not) lead to a solution

 Many kinds of puzzle can be solved with backtracking

Figure 2.2 Puzzle Problem

2.6 Branch and Bound Algorithms [4][16]

Branch and Bound Algorithm based on limiting search using current solution. It

means this is a general search method. This method considering the root problem and

lower bounding and upper bounding procedures are applied to the root problem.

Branch and bound algorithm is applied recursively to the sub problem. If an optimal

 18

solution is found to a sub problem, it is a feasible solution to the full problem, but not

necessarily globally optimal.

Branch and Bound Algorithm Approach

 Firstly try to track best current solution found

 The partial current solutions that can’t be improved that should be eliminated.

 Reduces amount of backtracking

Note: Not guaranteed to avoid exponential time O (2
n
)

Basic features of Branch and Bound Algorithm

Best solution is only compared with a nodes bound values only if the bound value us

not better then the best solution so far there are following reasons

 The value of the node bound is not better than the other

 Node does not represent the feasible solutions

 The node consists of a single point represent the subset of feasible solutions.

Example: Assignment Problem [17]

Assigning n people to n jobs so that the total cost is minimized. Each person

does one job and each job is assigned to one person.

Read the assignments as <Job 1, Job 2, Job 3, Job 4>:

<c,b,a,d> assigns Person c Job 1, Person b Job 2, etc.

Job 1 Job2 Job3 Job4

 3 2 7 8 Person a

 6 4 3 7 Person b

C= 5 8 1 8 Person c

 7 6 9 4 Person d

<a,b,c,d> cost =3+4+1+4=12

<a,b,d,c> cost=3+4+9+8=24

<a,d,b,c> cost=3+6+4+8=21

<d,a,b,c> cost=7+2+3+8=20

 19

<d,c,b,a> cost =7+8+3+8=26

Etc. totaling 4! Permutations.

Permutations: Generate n! Permutations. The following prints all the costs of the n!

Job assignments

All permutations algorithm - this is a simple algorithm just to

generate all n! Permutations

 Assumes: person <- a + 1 => person = b

 Initially, X[a..d] is unassigned any Job.

Permutations(X[a..d], person)

1. if person = d then print cost(X) -- Bottom of space

2. else

3. for Job {1, 2, 3, 4 } do

4. if not assigned(X, Job)

5. X[person+1] <-Job -- Assign person a job

6. Permutations(X[a..d], person+1)

7. X[person+1] <- Φ -- Unassign job

Cost (X) returns cost of assigning Job 1..4 to person a..d

Assigned (X, Job) returns true if Job is assigned person a..d

The resulting state-space for assigning Jobs {1, 2, 3, 4} to each person {a, b, c, d} is:

 Figure 2.3 Branch and bound Assignment problem

 20

 Job 1 Job2 Job3 Job4

 3 2 7 8 Person a

 6 4 3 7 Person b

C= 5 8 1 8 Person c

 7 6 9 4 Person d

From the table above, the rightmost branch <d, c, b, a>, cost=7
d1

 + 8
c2

 + 3
b3

 + 8
a4

=26

EXAMPLE: 4-queens problem

EXAMPLES: a) Longest Common Subsequence (LCS)

 Given two sequences x[1 . . m]and y[1 . . n], find a longest subsequence

common to them both.

 b) Optimal Substructure

Figure 2.4 Optimal Substructure

2.7 Decrease-And-Conquer algorithm [18][19]

Decrease-and-conquer is an approach to solving a problem by:

 Change an instance into one smaller instance of the problem.

 Solve the small instance.

 Convert the solution of the small instance into a solution for the large instance.

Decrease by a Constant

Decrease-by-a constant decreases the instance size by 1 (or some other constant), e.g.,

210 = 2 ∗ 29

 21

Figure 2.5 Decrease-And-Conquer algorithm

Decrease by a Constant Factor

Decrease-by-a constant-factor decreases the instance size by half (or some other

fraction), e.g., 210 = 25 ∗ 25.

Figure 2.6 Decrease by a constant factor

Comments on Insertion Sort

 Insertion sort ensures A[0] ≤ A[1] ≤ . . . ≤ A[i − 1].

 Insertion sort looks for correct position for A[i].

Problem of size n

Sub Problem

Of size n-1

Solution to the sub problem

Solution to the original problem

Problem of size n

Sub problem of

 Size n/2

Solution to the sub problem

Solution to the original problem

 22

 Insertion sort shifts values at and above correct position.

 Worst Case: The number of comparisons

 Best Case: n − 1 ∈ (n) comparisons if array is already sorted.

 Average Case ≈ n2/4 comparisons.

2.7.1 Depth-First Search

Graph Traversal

Graph traversal algorithms process all the vertices of a graph in a systematic fashion.

 They are useful for many graph problems such as checking connectivity,

checking a cyclicity, connected components, finding articulation points, and

topological sorting.

 First all the vertices are marked as unvisited.

 Then an unvisited vertex is selected, marked as visited, and all unvisited

vertices reachable from that vertex are marked as visited.

 Repeat above step until all vertices are visited.

Depth-First Search Algorithm

1. Algorithm DFS (v)

2. // Recursively visits unvisited vertices from v

3. // Input: Vertex v

4. // Output: Unvisited vertices from v are marked

5. Count ← count + 1

6. Mark v with count

7. For each vertex u adjacent from v do

8. If v is marked with 0

9. DFS (u)

 23

2.7.2 Breadth-First Search Algorithm

Breadth-first search is a graph-searching algorithm that begins at the root node and

explores all the remaining nodes. Then for each of those nearest nodes, it explores

their unexplored neighbor nodes, and so on, until it finds the goal.

Algorithm (informal)

1. Enqueue the root node.

2. Dequeue a node and examine it.

3. If the element sought is found in this node, quit the search and return a result.

4. Otherwise enqueue any successors (the direct child nodes) that have not yet

been examined.

5. If the queue is empty, every node on the graph has been examined -- quit the

search and return, "not found".

6. Repeat from Step 2.

Note: Using a stack instead of a queue would turn this algorithm into a depth-first

search.

Algorithm BFS (v)

1. // Visits unvisited vertices from v

2. // Input: Vertex v

3. // Output: Unvisited vertices from v are marked

4. Count ← count + 1; mark v with count

5. Initialize a queue with v

6. While the queue is not empty do

7. U ← remove vertex from the queue

8. For each vertex w adjacent from u do

9. If w is marked with 0

10. Count ← count + 1

11. Mark w with count

12. Add w to the queue

 24

2.8 Transfer and Conquer Algorithm [1][20]

Transform-and-conquer is an approach to solving a problem by changing an instance

to:

 A simpler instance of the same problem, or

 A different representation of the same problem, or

 An instance of a different problem.

Figure 2.7 Step of Transfer and conquer algorithm

Three kinds of transformation:

1. Instance simplification:

 A more convenient instance of the same problem

 Presorting, uniqueness checking, searching

2. Representational change:

 A different representation of the same instance

 Balanced search trees

 Algorithms in Action; Dr Linda Stern

 Heaps and heap sort

3. Problem reduction:

 A different problem altogether

 Lcm, counting paths, linear programming

 Reductions to graph problems

Simple Instance

Or

Another Representation

Or

Another Problem Instance

Problems Instance Solution

 25

CHAPTER 3

COMPARISON OF ALGORITHM DESIGN

STRATEGIES

Various algorithm design strategies has been compared on the basis of various factors

like complexity, memory required, stability etc. This is very important to know about

what is complexity of my algorithm in term of time and space. It would be vary

harmful to blindly use sorting without considering complexity of algorithm.

Comparison of various algorithm design strategy is also depends upon CPU, Memory

disk usage and network usage etc. This resources is defined the efficiency of

algorithm and performance is depends on the machine, compiler as well as the code.

Suppose size of the problem is larger then complexity then it will affect the

performance. The time required by a method is proportional to the number of basic

operations that it performs

Here are some examples of basic operations:

 Arithmetic operation

 Assignment

 Test

 Read

 Write

Some methods perform the same number of operations every time they are called. For

example, consider the size method, of the Sequence class always performs just one

operation: return numItems; the number of operations is independent of the size of the

sequence, methods like this (that always perform a fixed number of basic operations)

require constant time. Other methods may perform different numbers of operations,

depending on the value of a parameter or a field.

3.1 Different Notation for Calculating Complexity

To show the complexity of the sorting algorithm in time and space, some asymptotic

notations are used. These notations help us predict the best, average and poor

behavior of the sorting algorithm. The various notations are as follow:

 26

• Worst Case Running Time

• Best Case Running Time

•Best and Worst case are the same

3.1.1 Big-O Notation

• Definition: A theoretical measure of the execution of an algorithm usually the time

or memory needed, given the problem size n, which is usually the number of items.

Informally, saying some equation f (n) = O (g(n)) means it is less than some constant

multiple of g(n). The notation is read, "f of n is big oh of g of n".

• Formal Definition: f (n) = O (g (n)) means there are positive constants c and k,

such that 0 f (n) cg(n) for all n k. The values of c and k must be fixed for the

function f-and-must-not-depend-on-n [21] [24].

Figure 3.1: Big O Notation Graph

3.1.2 Theta Notation ()

• Definition: A theoretical measure of the execution of an algorithm usually the time

or memory needed, given the problem size n, which is usually the number of items.

Informally, saying some equation f (n) = (g(n)) means it is within a constant

multiple of g(n). The equation is read, "f of n is theta g of n".

• Formal Definition: f(n) = (g(n)) means there are positive constants c1, c2, and k,

such that 0 _ c1g(n) f(n) c2g(n) for all n k. The values of c1, c2, and k must be

fixed for the function f and must not depend on n [22] [24].

 27

Figure 3.2: Theta Notation Graph

This notation is medium bound indicate what average can happen

3.1.3 Omega Notation ()

• Definition: A theoretical measure of the execution of algorithms usually the time or

memory needed, given the problem size n, which is usually the number of items.

Informally, saying some equation f (n) = (g (n)) means g (n) becomes insignificant

relative to f (n) as n goes to infinity.

• Formal Definition: f(n) = (g(n)) means that for any positive constant c, there

exists a constant k, such that 0 cg(n) < f(n) for all n k. The value of k must not

depend on n, but may depend on c.

This notation is lower bound indicate what best can happen [23] [24].

3.2 How to Determine Complexities [24][25]

In general, how can you determine the run time of a piece of code? The answer is that

it depends on what types of statements are used.

1. Sequence of statements

2. statement 1;

3. statement 2;

4. ...

5. statement k;

Total time = time (statement 1) + time (statement 2) + ... + time (statement k) if each

statement is "simple" (only involves basic operations) then the time for each statement

is constant and the total time is also constant: O (1). In the following examples,

assume the statements are simple unless noted otherwise.

 28

6. if-then-else statements

7. if (condition) {

8. sequence of statements 1

9. }

10. else {

11. sequence of statements 2

12. }

Worst-case time is the slowest of the two possibilities: max (time (sequence 1) time

(sequence 2)). For example, if sequence 1 is O(N) and sequence 2 is O(1) the worst-

case time for the whole if-then-else statement would be O(N).

13. for loops

14. for (i = 0; i < N; i++) {

15. sequence of statements

16. }

The loop executes N times, so the sequence of statements also executes N times.

Since we assume the statements are O(1), the total time for the for loop is N * O(1),

which is O(N) overall.

17. Nested loops

18. for (i = 0; i < N; i++) {

19. for (j = 0; j < M; j++) {

20. sequence of statements

21. }

22. }

The outer loop executes N times. Every time the outer loop executes, the inner loop

executes M times. As a result, the statements in the inner loop execute a total of N *

M times. Thus, the complexity is O (N * M). In a common special case where the

stopping condition of the inner loop is j < N instead of j < M (i.e., the inner loop also

executes N times), the total complexity for the two loops is O (N2). When a loop is

involved, the same rule applies.

For example:

for (j = 0; j < N; j++) g(N);

Has complexity (N2). The loop executes N times and each time call g (N).

 29

3.3 Best-case and Average-case Complexity [24]

Some methods may require different amounts of time on different calls, even when

the problem size is the same for both calls. For example, if add before is called with a

sequence of length N, it may require time proportional to N (to move all of the items

and/or to expand the array). This is what happens in the worst case. However, when

the current item is the last item in the sequence, and the array is not full, add Before

will only have to move one item, so in that case its time is independent of the length

of the sequence; i.e., constant time. In general, there is a need to consider the best and

average time requirements of a method as well as its worst-case time requirements.

Which is considered the most important will depend on several factors. For example,

if a method is part of a time-critical system like One that controls an airplane, the

worst-case times are probably the most important (if the plane is flying towards a

mountain and the controlling program can't make the next course correction until it

has performed a computation, then the best-case and average case times for that

computation are not relevant - the computation needs to be guaranteed to be fast

enough to finish before the plane hits the mountain) [25].

On the other hand, if occasionally waiting a long time for an answer is merely

inconvenient (as opposed to life-threatening), it may be better to use an algorithm

with a slow worst-case time and a fast average-case time, rather than one with so-so

times in both the average and worst cases. For add Before, for a sequence of length N,

the worst-case time is O (N), the best-case time is O (1), and the average-case time

(assuming that each item is equally likely to be the current item) is O (N), because on

average, N/2 items will need to be moved.

Note that calculating the average-case time for a method can be tricky. You need to

consider all possible values for the important factors, and whether they will be

distributed evenly.

 30

3.4 Advantage and Disadvantage of Design strategy

Design Strategy Use Advantage Disadvantage Example

Brute force Defence

methods

(Strong

passwords

) And Game

methods (Chess

Game)

Speeding up

searches

1. Does not uses

any tactics or short

cut

2. Enhaustically

checks for all

notation space

Selection sort,

String

matching,

Exhaustive

search

Greedy

algorithm

Used for

Solving meta

heuristic

Problem (A

meta heuristic is

a heuristic

method

(Heuristics are

"rules of

thumb",

educated

guesses,

intuitive

judgments or

simply common

sense.) for

solving a very

general class of

computational

problems by

combining user-

given black-box

procedures

1. Very large

Number of

feasible solutions.

2.Easy to

implement

1. It is much slower

2. Does not give

optimum result for

all problems

3. May be receiving

1. Traveling

salesman

problem

2. Scheduling

problem

Divide and

conquer

D&C algorithm

that was

specifically

developed for

computer and

properly

analyzed is the

merge sort

algorithm,

invented by

John von

Neumann in

1945.

1.Solving difficult

problems

2. Algorithm

efficiency

3. Parallelism

4. Memory access

1. Conceptual

difficulty

2. Recursion

overhead

3. Repeated sub

problems

1. Tower of

Hanoi

2. Merge Sort

Dynamic

Programming

Used for

Solving

problems

Does not required

repeated

calculation

1. Recursive

formulation is

difficult to make

1. Fibonacci

sequence

2. Word wrap

 31

exhibiting the

properties of

overlapping sub

problems and

optimal

substructure

Multidimension

al optimization

problem

2. Only for

overlapping sub

problems

3. Interval

scheduling

4. Matrix-

chain

multiplication

problem

Backtracking

Algorithm

Backtracking

can be applied

only for

problems which

admit the

concept of a

"partial

candidate

solution" and a

relatively quick

test[26].

1. quick test

2. Pair matching

3. Following real

life concept

1. Not widely

implemented.

2. Cannot express

left-recursive rules

3. More time &

complexity

Eight queens

puzzle.

Branch and

bound

1. Used for

finding optimal

solutions of

various

optimization

problems,

especially in

discrete and

combinatorial

optimization.

2. Branch and

bound is a

systematic

method for

solving

optimization

problems

1. Very large

Number of

feasible solutions.

2. Tightens the

solution space

often every step

3. Proming

possible

1. Finding proming

strategies require

clever thinking

technologies

1. The Graph

Partitioning

Problem.

2. The

Quadratic

Assignment

Problem

3. The

Symmetric

Traveling

Salesman

problem

Decrease-and-

conquer

It is used for

Change an

instance into

one smaller

instance of the

problem

Solve smaller

instance

Depends on

Efficiency of

sorting.

Binary search

Fake-coin

puzzle

Transform-and-

conquer

Solve a

problem’s

instance by

transforming it

into another

1. Fast

2. Algorithm

efficiency

Not widely

implemented

Searching and

sorting (

Telephone

directories in

sorted order)

 32

simpler/easier

instance of the

same problem

Table 3.1 Advantage and Disadvantage of Design strategy [4][20][26].

3.5 Type of problems

There are many different problems, being discussed through different algorithm

design strategies. Some problems are related to dynamic programming, optimization

problem, hard problem etc. some problems are based on one or more type of

algorithm design strategies need to find which algorithm strategies is best for a

particular problem as well as suitable examples for a each problem. Some useful

guidelines are available regarding the suitability of a particular technique to a

problem, then a lot of time can be saved and algorithms may be developed only in that

technique method.

Type of Problem Algorithm Strategies Example

 Multi-branched

recursion.

 Hard Problems

 Sharing repeated sub

problems

 Overlapping sub

problems

 Optimal substructure

 Memorization

-Divide-and-conquer algorithms are

naturally implemented as recursive

procedures.

It is solve the conceptual and

optimization problem by caching sub

problem solutions (memorization)

rather than recomputing them

- It is provide a natural way to design

efficient algorithm.

-The dynamic programming algorithm

is suitable for the observe the

dependency of the sub problem

Fibonacci

numbers, Towers

of Hanoi, The

Halting Problem,

geometric curves,

Closest-Points

Merge sort

 Optimization problems

 Heuristic problem

 Interval Scheduling

-Brute force Is a straightforward

approach.

 -This is directly based on The

problem’s statement and definitions of

the concepts.

Selection sort,

String matching,

Convex-hull

problem, and

Exhaustive

 33

-Greedy algorithms can run faster than

brute force ones.

- It is not always greedy strategy tell

the correct solution.

search, Traveling

salesman problem

 Combinatorial

optimization problems

- Backtracking depends on user-given

black box procedures.

- Backtracking is a better approach

than brute force (Independently

evaluating all possible solutions)[27].

Calculate the path

(route)(Example

the Traveling

Salesman

Problem,

Minimum

Spanning Tree

Problem, N

Queens, Time and

space complexity

- Useful when

problem size is

small - Integer

linear programs

(ILPs) problems

 Representation problem Transform and Conquer algorithm

basically change one instance to

another instance of the problems so

this type of the problem basically

suitable for the transform and conquer

algorithm.

Heap sort,

gaussian

elimination,

hashing, search

trees

 Global optimization

problem

 Test-Cover Problem

- The branch and bound strategy

divides a problem to be solved into a

number of sub problems, similar to the

strategy backtracking.

- Branch and bound algorithm is

Sometimes we can tell that a particular

branch will not lead to an optimal

solution:

Travelling

salesman problem

 34

- The partial solution may already be

infeasible

- Already have another solution that is

guaranteed to be better than any

descendant of the given solution

Table 3.2 This table shown the types of the problems and define the algorithms and

Example of algorithms [1][4][20].

3.6 Characteristic of problems

Before choosing a best algorithm design strategies for a problem there is a need to

know the characteristics of that problem. Those characteristics will be the basis to

choose its strategy. To solve any problem the problem’s characteristics must be

defined and what is purpose of choosing such algorithm strategy for that particular

problem. i.e. (objective of selection).moreover what is use of this strategy for a

problem. This is a first step to solve any problems. Some useful guidelines are

available regarding the suitability of a particular technique to a problem, then a lot of

time can be saved and algorithms may be developed only in that technique method.

Type of problem Characteristic Purpose of use (Objective

of Selection)

Multi-branched

recursion problem

 Complete task solve by

combining solutions to sub-

tasks.

 Decompose a complete task

into smaller, simpler sub-

tasks that are similar

 Thus, each sub-task can be

solved by applying a similar

technique

 The base case is the smallest

problem that the routine

solves and the value is

returned to the calling method

It's better when you can

guarantee this things:

1) each recursive step

breaks down the problem

into a smaller problem of

the same type.

2) Each recursive step

reduces the problem

significantly.

3) Less memory required

4) Distinct sub-problems

can be executed on different

processors (Parallelism)

 35

[28].

 Calling a method involves

certain overhead in

transferring the control to the

beginning of the method and

in storing the information of

the return point [28].

 Memory is used to store all

the intermediate arguments

and return values on the

internal stack [28].

5) Recursive algorithm,

there is considerable

freedom in the choice of the

base cases, the small sub

problems that are solved

directly in order to terminate

the recursion.

Memorization

problem

 Memorization is a technique

used to speed up computer

programs by storing the

results of functions

 Memorization is a reduce the

power consumption and

increase the performance.

 Memorization is a

characteristic of dynamic

programming.

 Functions can only be

memorized if they are

referentially transparent that

is, if they will always return

the same result given the

same arguments.

 Memorization does not

change the values returned by

a function. It only changes the

performance characteristics of

the function.

1) Memorizing is a

technique that can come in

handy in programming

situations where you’re

performing a calculation

that has input, and the same

input always yields the same

result.

2) Memorize - Make

functions faster by trading

space for time

Optimization We are working on real- 1) Optimization is the

 36

problems

world, large-scale, hard

optimization problems

 Mostly Optimization problem

is handle the mixed-integer

and nonlinear programming

problems.

 Optimization problem is

responsible for a bounded

ness, linearity, convexity and

monotonicity

 Optimization problem is

providing the feasible domain

(Convexity) using the solving

the problem.

 Optimization problem is use

of mathematical strategies to

search for a optimum

combinations.

 Design optimization as

systematic design

improvement.

collective process of finding

the set of conditions

required to achieve the best

result from a given situation

for a certain objective

2) It is a very powerful

technique for solving

allocation problems

3) It is solve a brainstorming

problem and lateral thinking

problem.

4) Optimization techniques

in PROC CALIS will find

the correct solution.

Heuristic problem These methods in most cases

employ experimentation and

trial-and-error techniques

 Heuristics are rules of thumb.

 Heuristics are a way to

improve time for determining

an exact or approximate

solution for NP-problems.

 Heuristics are a way to

improve time for determining

an exact or approximate

1) A heuristic method is

particularly used to rapidly

come to a solution that is

reasonably close to the best

possible answer, or optimal

solution.

2) Heuristic is control

information according to the

problem solving in human

beings and machines

3) Heuristics are a way to

improve time for

 37

solution for NP-problems. determining an exact or

approximate solution for

problems.

Interval

scheduling

problems

 Interval scheduling problems,

also known as fixed job

scheduling or k-track

assignment problems [29].

 Interval scheduling problems

is that each job has a finite

number of fixed processing

intervals [29].

 These problems arise

naturally in different real-life

operations planning

situations, including the

assignment of transports to

loading/unloading terminals,

work planning for personnel,

computer wiring, bandwidth

allocation of communication

channels, printed circuit board

manufacturing, gene

identification and examining

computer memory structures.

 Show its relations to cognate

problems in graph theory, and

survey existing models,

results on computational

complexity and solution

algorithms.

1) A simple flow problem

formulation permits

minimizing maximum

lateness for the more

general multimachine case.

2) Performance measures

here can focus on the

individual jobs; for instance,

one may wish to maximize

the total weight of the

accepted jobs.

3) Interval scheduling allow

taking into account the cost

of rejecting (or the profit of

accepting) an individual job.

4) It is used in real-time

operating systems.

Activity Selection

Problem

 The main problem for action

selection is complexity.

 all computation takes both

1) Find Optimal scheduling

of unit time jobs with

deadlines and penalties for

 38

time and memory, agents

cannot possibly consider

every option available to them

at every instant in time

 The action selection

mechanism determines not

only the agent’s actions in

terms of impact on the world,

but also directs its perceptual

attention, and updates its

memory.

missing the deadline.

2) The activity-selection

problem is to select the

Maximum number of

mutually compatible

activities.

Table 3.3 Characteristic of the problems [28][29][30]

3.7 Details of Applicable Algorithms

This table represents the list of problems and which algorithm strategies are

applicable for it. There are some examples which are related to multi recursion

problems, optimization problems etc. some problems are solved by one or more

algorithm strategies.

S.No Problem Applicable Algorithms

 A B C D E F G

1. Fibonacci numbers

2. Towers of Hanoi,

3. The Halting Problem

4. Merge sort

5. Selection sort,

6. String matching

7. Exhaustive search

8. Traveling salesman problem

9. Minimum Spanning Tree Problem

10. Integer linear programs (ILPs) problems

11. Heap sort,

 39

12. Hashing, search trees

13. Gaussian elimination

Table 3.4 Details of Applicable Algorithms.

A= Divide and Conquer Algorithm

B= Dynamic programming Algorithm

C=Brute force Algorithm

D=Greedy algorithm

E=Backtracking Algorithm

F= Transform and Conquer algorithm

G=Branch and bound algorithm

 40

CHAPTER 4

PROBLEM STATEMENT

There exist a number of algorithms, every algorithm is problem specific. The choice

of an algorithm may not just depend on computational complexity; it also depends

upon the characteristics, advantages and disadvantages. This report shows how an

algorithm is best for a particular situation, based upon their advantages and

comparison with others. The problem of choosing the best algorithm design strategy

arises frequently in a computer programming. How one can predict an algorithm is

best for a particular problem? What makes a good design strategy for an algorithm?

Speed is probably the top consideration, but other factors of interest includes

versatility in handling various data types, consistency of performance, memory

requirements, length and complexity of code, and the property of stability.

There are some advantages and disadvantages in every algorithm design strategy,

which are known and this disadvantage leads to various algorithm design strategy to

solve a particular problem. Some algorithm design strategies are problem specific

means they are well suited for some specific problem and have disadvantage against

another problem. One objective is that, after applying different strategies for a

particular problem, a set of guidelines can be given that how a particular category of

algorithm design strategy is better for a particular set of problems.

 41

CHAPTER 5

 RESULT & CONCLUSION

5.1 Different Algorithm Design Strategies to solve the Problems

Several design technique are applied to a single problem. These design technique is

Brute Force, Dynamic Programming, Branch and Bound, Greedy Algorithms, divide

and conquer, backtracking, decrease and conquer and transfer and conquer algorithm.

This design technique to solve the different Problem. The main goal of this report is to

compare the results of these algorithms and find the best one.

5.1.1. The Knapsack Problem

The Knapsack Problem is an example of a combinatorial optimization problem, which

seeks for a best solution from among many other solutions. Given a set of items, each

with a weight and a value, determine the number of each item to include in a

collection so that the total weight is less than a given limit and the total value is as

large as possible. It derives its name from the problem faced by someone who is

constrained by a fixed-size knapsack and must fill it with the most useful items .

Different Design Strategies

Algorithm Design Strategies

Brute Force It will be 2
n
 possible combinations of items for

the knapsack.

 It is used for small instance of the knapsack

problem.

 It does not require much programming effort.

 It can be represented as tree format.

Dynamic Programming Dynamic programming algorithm to derive a

recurrence relation that expresses a solution to an

instance of the problem in terms of solutions to

its smaller instances [18].

 It does not require any additional structures.

 42

Greedy Algorithm Greedy programming techniques are used in

optimization problems.

 Possible greedy strategies to the 0/1 Knapsack

problem:

o First of all choose maximum value from

the remaining items and increases the

value of the knapsack.

o Select the lightest item from the

remaining items, which uses up capacity

as slowly as possible allowing more items

to be stuffed in the knapsack.

o Select the items with as high a value per

weight as possible.

 We implement and test all strategies. We got the

best results is select the items with as high value-

to-weight ratios as possible.

Branch and Bound This approach solves some large instances of

difficult combinatorial problems.

 Branch and bound is based on the state space

tree.

 In the worst case, the branch and bound

algorithm will generate all intermediate stages

and all leaves

 The tree will be complete and will have 2
n-1

 – 1

nodes, i.e. will have an exponential complexity.

 It is better than the brute force algorithm because

on average it will not generate all possible nodes.

 The required memory based on the length of the

priority queue.

Backtracking It is based on item weights and values, find the

combination of items to include in the knapsack

that will maximize the value, subject to a weight

limitation.

 43

 The current value of the partial knapsack

probably cannot be used.

 The development without a full branch-and-

bound implementation.

 Backtracking would be much more effective if

we had even more items or a smaller knapsack

capacity [31].

Table 5.1.1 Different Algorithm Design Strategies to solve the 0/1 Knapsack Problem

For the comparison of the different algorithm design technique, files of different sizes

are generated. There are two type of comparison.

 Increasing the number of items to the knapsack

 Increasing the capacity of the knapsack

These constraints related to number of item and capacity.

5.1.2. The Traveling Sales Man problem

The traveling salesman problem is considered the most prominent unsolved

combinatorial optimization problems and to be sure, the best that existing solution

methods can do is to handle relatively small traveling sales man problem or large

problems with special methods.

Different Design Strategies
Algorithm Design Strategies

Brute Force Seems to be the obvious solution.

 Computationally expensive- turns out to be O

(n!).

 The brute-force method is to simply generate all

possible routes and compare the distances.

 The time required to come up with a solution is

n!

Dynamic Programming Dynamic Programming Algorithm solves the

respective problem in only O (n
2
2

n
).

 Dynamic-programming algorithm for solving

 44

Traveling Sales man Problem with a special type

of precedence constraints.

 We have applied our procedure to solving

Traveling Sales man Problem with time,

scheduling problems, release and delivery times,

in delivery problems, and in routing.

Greedy Algorithm It is based on Kruskal's algorithm. It only gives a

sub optimal solution in general [32].

 Works for complete graphs. May not work for a

graph that is not complete.

 As in Kruskal's algorithm, first sort the edges in

the increasing order of weights.

 Starting with the least cost edge, look at the

edges one by one and select an edge only if the

edge, together with already selected edges,

1. Does not cause a vertex to have degree

three or more.

2. Does not form a cycle, unless the number

of selected edges equals the number of

vertices in the graph.

Branch and Bound An enhancement of backtracking.

 The branch-and-bound algorithm does not limit

us to any particular way of traversing the tree.

 It is used only for optimization problems.

 The backtracking algorithm requires the using of

DFS traversal and is used for non-optimization

problems

Backtracking Backtracking is a general technique for

organizing the exhaustive search for a solution to

a combinatorial problem.

 The backtracking technique can be applied to

those problems that exhibit the domino principle.

 45

 If a constraint is not satisfied by a partial

solution, the constraint will not be satisfied by

any extension of the partial solution to a global

solution.

Heuristic Algorithm It is often called as a difficult problem.

 Traveling cost is the minimum.

 We are not aware of any other quick algorithm

that finds a best solution we will use a heuristic

algorithm.

 Heuristic Algorithm solves the respective

problem in only N
2

Table 5.1.2 Different Algorithm Design Strategies to solve The Traveling Sales Man

problem.

Comparison of dynamic-programming algorithm, heuristic algorithm, brute force,

greedy algorithm branch and bound algorithm and backtracking for solving TSPs with

a precedence constraint. These constraints related to delivery time, scheduling,

routing.

5.1.3 The Closest pair of point’s problem

The closest pair of point’s problem or closest pair problem is a problem of

computational geometry. Find a pair of points with the smallest distance between

them. Algorithm of finding distances between all pairs of points and selecting the

minimum requires O(dn
2
) time. It turns out that the problem may be solved in O(n log

n) time. The optimality follows from the observation that the element uniqueness

problem (with the lower bound of Ω(n log n) for time complexity) is reducible to the

closest pair problem: checking whether the minimal distance is 0 after the solving of

the closest pair problem answers the question whether there are two coinciding points.

Different Design Strategies

Algorithm Design Strategies

Divide & Conquer Divide the problem into two equal sized sub

problems

 46

 Solve those sub problems recursively

 Merge the sub problem solutions into an overall

solution and hence takes O (nlogn) time.

 Divide: Sort the points by x- coordinate; draw

vertical line to have roughly n/2 points on each

side.

 Conquer: find closest pair in each side

recursively.

 Combine: Find closest pair with one point in

each side.

Brute Force The closest pair of points can easily be computed

in O(n²) time

 To do that, one could compute the distances

between all the n(n-1)/2 pairs of points, then pick

the pair with the smallest distance.

Branch and Bound Select good branching.

 Store the information in a stack format.

 Not effective, because data is stored in different

location.

 It is very difficult monitor of the data

 User facing the Leakage memory problem.

Backtracking The closest pair of points problem asks for the

minimal number of tests needed to uniquely

identify a disease infection.

 47

Heuristic Algorithm It is more flexible design systems but not

guarantee that the solution found is optimal.

 It is a efficient and flexible

 It is able to produce an acceptable solution to a

problem in many practical scenarios but for

which there is no formal proof of its correctness.

 In practical problems, a heuristic algorithm may

be the only way to get good solutions in a

reasonable amount of time.

Table 5.1.3 Different Algorithm Design Strategies to solve The Closest pair of point’s

problem.

5.1.4 The N-Puzzles Problem

The N-puzzle problem provides a good framework for describing a concept of AI.

This concept is related to the various uninformed and informed search algorithms.

This is usually applied in this setting and their performance is evaluated.

Different Design Strategies

Algorithm Design Strategies

Brute Force Brute-force approach to solving problems in

 Explicitly

 Implicitly

 Combinatorial objects such as permutations,

combinations, and subsets of a given set. It

suggests generating all the elements of the

problem's domain and then finding a desired

element (e.g., the one that optimizes a given

objective function).

 In fact, many puzzles can provide good examples

of problems that either cannot be solved by brute

force at all, or for which this strategy yields a

very clumsy and unsatisfactory solution.

 48

 Puzzles that can be solved by brute force, one

can suggest, for example, getting the 3-by-3

magic square by exhaustive search. It provides a

good illustration of the limitations of exhaustive

search and the usefulness of knowing an

algorithm's efficiency class.

Divide-and-conquer Few puzzles solvable by the divide-and-conquer

approach. Here are two examples that are rather

well known.

o The first one is the triomino puzzle.

o The other problem is the nuts-and-bolts

problem.

 Divide-and-conquer is based on partitioning.

 Solving each of them recursively, and then

combining their solutions to get a solution to the

original problem.

Decrease-and-conquer The decrease-by-a-constant variety suggests

decreasing a problem's size by a constant.

 This approach is considered by some to be a

special case of divide-and conquer, it is better to

consider them as distinct design strategies.

 The crucial difference between the two lies in the

number of smaller sub problems that need to be

solved: several (usually, two) in divide-and-

conquer algorithms and just one in decrease-and-

conquer algorithms. It is further useful, both from

the design and the analysis perspectives, to

distinguish three varieties of this strategy

o Decrease-by-a-constant variety

o Decrease-by-a-constant-factor,

o Variable-size

Transform-and-conquer The last most general technique is based on the idea

of transformation.

 49

 Its first variety called instance simplification.

 The Second variety called Representation

change.

 The third variety of the transformation

strategy is problem reduction.

Table 5.1.4 Different Algorithm Design Strategies to solve The N-Puzzles Problem.

N-Puzzles can be very helpful for different algorithm design technique. Two type of

algorithm design techniques are considered

 The Most general algorithm design techniques like: brute force, divide and-

conquer, decrease-and-conquer, and transform-and conquer and

 Less general techniques like: greedy, dynamic programming, backtracking,

and branch-and-bound.

According to my research for future more puzzles suitable for algorithm design

technique and analysis of algorithms will be found in will be found in existing

collections or specifically designed for this worthy purpose

The objective of the analysis in these tables is that if a new problem arises then based

on the inherent characteristics of the problem, it can be categorized in to particular

category and then right algorithm can be written. Using the given strategies some odd

problems were taken from different sources and the result was, ability to figure out

exact strategies to be used for 67% of the problems in the first instance. For 9% of the

problems, two different strategies were tried to get the efficient algorithm; because the

characteristics of these problem does not exactly points to a particular strategy. The

remaining 24% could not be categorized into any of the above categories or they were

looking similar to multiple categories. So initially it is a good to start and the research

will continues further to improve these results so that more problems can be

categorized and solved in first instance.

 50

ANNEXURE I

REFERENCES

[1] Annay Levitin, “Do We Teach the Right Algorithm Design Techniques?”

 Technical Symposium on Computer Science Education. The proceedings of the

 thirtieth SIGCSE technical symposium on Computer science education,

 ISBN: 1-58113-085-6 pp 179- 183 (1999).

[2] Michael T. Goodrich,Roberto Tamassia, “Algorithm Design Foundations,Analysis

 and Internet Examples”.

 http://ww3.algorithmdesign.net/ch00-front.html

[3] Javier Galve Frances, Julio Garcia Martin, Jose M. Burgos Ortiz, Miguel Sutil

 Martin, “An Approach to Algorithm Design by Patterns”

 http://hillside.net/europlop/HillsideEurope/Papers/EuroPLoP1998/1998_Galve-

 FrancesEtAl_AlgorithmDesignByPatterns.pdf.

[4] Fundamentals of computer algorithms by Ellis Horowitz Sartaj Sahni Sanguthevar

 Rajasekaran 2005.

[5] Algorithm Correctness www.cs.wm.edu/~coppit/csci243-fall2002/AlgCor1.pdf

[6] Frank M. Carrano, Janet J. Prichard. Data Abstraction and problem solving with

 java. Addison Wesley Longman, 2001

 http://jaireggeton.googlepages.com/correct.pdf

[7] Michael J. Jacobson, “Correctness of Algorithms” (CPSC 331, Winter 2007)

 University of Calgary Canada.

 http://pages.cpsc.ucalgary.ca/~jacobs/Courses/cpsc331/W07/topics/correct

 ness.html

[8] Types of Algorithms http://www.cis.upenn.edu/~matuszek/cit594-2009/Lectures/

 33-algorithm-types.ppt

[9] Christian Charras, ”Brute Force Algorithm”, 1997.

 http://www-igm.univ-mlv.fr/%7Elecroq/string/node3.html#SECTION0030

[10] Fawzi Emad, Chau-Wen Tseng ,“Algorithm Strategies” University of Maryland.

 http://www.cs.umd.edu/class/spring2005/cmsc132/lecs/lec34.ppt

[11] algorithmics.comp.nus.edu.sg/wiki/_.../algorithm_design.ppt?id.

[12] Data structures and algorithm analysis in C by Mark Allen Weiss.

[13] www.rocw.raifoundation.org/computing/BCA/.../lecture-15.pdf

 51

[14] Algorithm Design Strategies

 www.cs.purdue.edu/homes/ayg/CS490B/lec1.pdf

[15] Anastas Misev, “Algorithmic Patterns Data Structures and Algorithms in Java”.

 http://perun.im.ns.ac.yu/java/workshops/Algorithmic-patterns.pdf

[16] Fawzi Emad, Chau-Wen Tseng, “ Algorithm Strategies”

 www.cs.umd.edu/class/spring2005/cmsc132/lecs/lec34.ppt

[17] http://homepages.ius.edu/rwisman/C455/html/notes/Backtracking/

 BranchandBound.htm

[18] Decrease and Conquer Concept Asst. Prof. Dr. Bunyarit Uyyanonvara

 Thammasat University.

 www.siit.tu.ac.th/bunyarit/.../ITS033x06xDecreasexConquer.ppt

[19] B.B. Karki, LSU, “ Decrease- and – Conquer”

 www.csc.lsu.edu/~karki/DA-08/DA16.pdf

[20] Cormen, Leiserson And Rivest, Introduction To Algorithms, McGraw Hill And

 Mit Press, 1990, 329-333.

[21] http://www.itl.nist.gov/div897/sqg/dads/HTML/bigOnotation.html big-o-notation

 29 March 2009.

[22] http://www.nist.gov/dads/HTML/theta.html theta, accessed on 29 March 2009.

[23] http://www.nist.gov/dads/HTML/omegaCapital.html, accessed on 29 March 09

[24] Pandey, Ramesh Chand, Goel, Shivani, “Study and Comparison of various

 sorting”, Algorithms, Thapar University July 2008.

[25] http://pages.cs.wisc.edu/~hasti/cs367-common/notes/COMPLEXITY.html,

 Accessed on 29 April 2009.

[26] Gurari, Eitan, Backtracking algorithms CIS 680: DATA STRUCTURES (1999).

[27] Backtracking Algorithms

 www.cs.rpi.edu/~hollingd/psics/notes/backtracking.pdf

[28] Recursion (Winter 2004-5), http://www2.latech.edu/~box/ds/chap6.ppt

[29] Interval Scheduling, Frits C.R. Spieksma, Katholieke Universiteit Leuven,

 Naamsestraat 69, B-3000 Leuven, Belgium, frits.

 www.mistaconference.org/2007/papers/Interval%20Scheduling.pdf

[30] De Sevin, E. Thalmann, D.A motivational Model of Action Selection for Virtual

 Humans. In: Computer Graphics International (CGI), IEEE Computer Society

 Press, New York (2005).

 52

[31] Brute Force Approach

 www.cse.msu.edu/~torng/Classes/Archives/cse830.../Lecture11.ppt

[32] A Greedy Algorithm for Traveling Sales Man Problem.

 http://lcm.csa.iisc.ernet.in/dsa/node186.html

[33] Hristakeva, Maya and Dipti Shrestha. “Solving the 0/1 Knapsack Problem”

 MICS Proceedings 2004.

[34] Cengiz Erbas, Seyed sarkeshik, Murat M. Tanik, “Different perspectives of the

 N-queens problem”, ACM Annual Computer Science Conference Proceedings of

 the 1992 ACM annual conference on Communications,

 ISBN:0-89791-472-4 pp: 99 – 108.

[35] Anany Levitin, Mary-Angela Papalaskari, “Using Puzzles in Teaching

 Algorithms” ACM SIGCSE Bulletin, Volume 34, Issue 1 (March 2002)

 ISSN:0097-8418, pp 292 – 296.

 53

ANNEXURE II

 LIST OF PUBLICATIONS

[1] Shailendra Nigam, Dr. Deepak Garg “Choosing Best Algorithm Design Strategies

For a Particular Problem”, In Proceedings of the IEEE International Advance

Computing Conference (IACC 09), Thapar University Patiala, India (6-7 March

2009).

